比特币日收盘价预测采用优化的网格搜索方法

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
M. Rostami, Mahdi Bahaghighat, M. M. Zanjireh
{"title":"比特币日收盘价预测采用优化的网格搜索方法","authors":"M. Rostami, Mahdi Bahaghighat, M. M. Zanjireh","doi":"10.2478/ausi-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract Cryptocurrencies are digital assets that can be stored and transferred electronically. Bitcoin (BTC) is one of the most popular cryptocurrencies that has attracted many attentions. The BTC price is considered as a high volatility time series with non-stationary and non-linear behavior. Therefore, the BTC price forecasting is a new, challenging, and open problem. In this research, we aim the predicting price using machine learning and statistical techniques. We deploy several robust approaches such as the Box-Jenkins, Autoregression (AR), Moving Average (MA), ARIMA, Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and Grid Search algorithms to predict BTC price. To evaluate the performance of the proposed model, Forecast Error (FE), Mean Forecast Error (MFE), Mean Absolute Error (MAE), Mean Squared Error (MSE), as well as Root Mean Squared Error (RMSE), are considered in our study.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"11 1","pages":"265 - 287"},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bitcoin daily close price prediction using optimized grid search method\",\"authors\":\"M. Rostami, Mahdi Bahaghighat, M. M. Zanjireh\",\"doi\":\"10.2478/ausi-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cryptocurrencies are digital assets that can be stored and transferred electronically. Bitcoin (BTC) is one of the most popular cryptocurrencies that has attracted many attentions. The BTC price is considered as a high volatility time series with non-stationary and non-linear behavior. Therefore, the BTC price forecasting is a new, challenging, and open problem. In this research, we aim the predicting price using machine learning and statistical techniques. We deploy several robust approaches such as the Box-Jenkins, Autoregression (AR), Moving Average (MA), ARIMA, Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and Grid Search algorithms to predict BTC price. To evaluate the performance of the proposed model, Forecast Error (FE), Mean Forecast Error (MFE), Mean Absolute Error (MAE), Mean Squared Error (MSE), as well as Root Mean Squared Error (RMSE), are considered in our study.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"11 1\",\"pages\":\"265 - 287\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2021-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

摘要

加密货币是可以以电子方式存储和转移的数字资产。比特币(BTC)是最受欢迎的加密货币之一,引起了许多关注。比特币价格被认为是一个具有非平稳和非线性行为的高波动性时间序列。因此,比特币价格预测是一个新的、具有挑战性的、开放的问题。在这项研究中,我们的目标是使用机器学习和统计技术来预测价格。我们部署了几种强大的方法,如Box-Jenkins、自回归(AR)、移动平均(MA)、ARIMA、自相关函数(ACF)、部分自相关函数(PACF)和网格搜索算法来预测比特币价格。为了评估所提出的模型的性能,我们的研究中考虑了预测误差(FE),平均预测误差(MFE),平均绝对误差(MAE),均方误差(MSE)以及均方根误差(RMSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bitcoin daily close price prediction using optimized grid search method
Abstract Cryptocurrencies are digital assets that can be stored and transferred electronically. Bitcoin (BTC) is one of the most popular cryptocurrencies that has attracted many attentions. The BTC price is considered as a high volatility time series with non-stationary and non-linear behavior. Therefore, the BTC price forecasting is a new, challenging, and open problem. In this research, we aim the predicting price using machine learning and statistical techniques. We deploy several robust approaches such as the Box-Jenkins, Autoregression (AR), Moving Average (MA), ARIMA, Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and Grid Search algorithms to predict BTC price. To evaluate the performance of the proposed model, Forecast Error (FE), Mean Forecast Error (MFE), Mean Absolute Error (MAE), Mean Squared Error (MSE), as well as Root Mean Squared Error (RMSE), are considered in our study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信