{"title":"医学可解释性的系统地图","authors":"Hajar Hakkoum, Ibtissam Abnane, A. Idri","doi":"10.5220/0010968700003123","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) has been rapidly growing, mainly owing to the availability of historical datasets and advanced computational power. This growth is still facing a set of challenges, such as the interpretability of ML models. In particular, in the medical field, interpretability is a real bottleneck to the use of ML by physicians. This review was carried out according to the well-known systematic map process to analyse the literature on interpretability techniques when applied in the medical field with regard to different aspects. A total of 179 articles (1994-2020) were selected from six digital libraries. The results showed that the number of studies dealing with interpretability increased over the years with a dominance of solution proposals and experiment-based empirical type. Additionally, artificial neural networks were the most widely used ML black-box techniques investigated for interpretability.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Systematic Map of Interpretability in Medicine\",\"authors\":\"Hajar Hakkoum, Ibtissam Abnane, A. Idri\",\"doi\":\"10.5220/0010968700003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) has been rapidly growing, mainly owing to the availability of historical datasets and advanced computational power. This growth is still facing a set of challenges, such as the interpretability of ML models. In particular, in the medical field, interpretability is a real bottleneck to the use of ML by physicians. This review was carried out according to the well-known systematic map process to analyse the literature on interpretability techniques when applied in the medical field with regard to different aspects. A total of 179 articles (1994-2020) were selected from six digital libraries. The results showed that the number of studies dealing with interpretability increased over the years with a dominance of solution proposals and experiment-based empirical type. Additionally, artificial neural networks were the most widely used ML black-box techniques investigated for interpretability.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010968700003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010968700003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning (ML) has been rapidly growing, mainly owing to the availability of historical datasets and advanced computational power. This growth is still facing a set of challenges, such as the interpretability of ML models. In particular, in the medical field, interpretability is a real bottleneck to the use of ML by physicians. This review was carried out according to the well-known systematic map process to analyse the literature on interpretability techniques when applied in the medical field with regard to different aspects. A total of 179 articles (1994-2020) were selected from six digital libraries. The results showed that the number of studies dealing with interpretability increased over the years with a dominance of solution proposals and experiment-based empirical type. Additionally, artificial neural networks were the most widely used ML black-box techniques investigated for interpretability.