A. Carella, Federica Ciocchetta, F. Signoretti, V. Michelangeli
{"title":"从网上数据我们能了解到什么?","authors":"A. Carella, Federica Ciocchetta, F. Signoretti, V. Michelangeli","doi":"10.2139/ssrn.3746190","DOIUrl":null,"url":null,"abstract":"We exploit a novel dataset on mortgages offered by banks through Italy’s main online mortgage broker, which works with banks representing over 80 per cent of mortgages granted, to gain an up-to-date assessment of loan supply conditions. Characteristics of mortgages are reported for about 85,000 borrower-contract profiles, constant over time, available at the beginning of each month starting from March 2018. We document that riskier applications, characterized by high loan-to-value ratios and long maturity, are, on average, offered by a smaller number of banks that charge higher interest rates. Online banks tend to provide better price conditions than traditional intermediaries. We use the online rates offered to nowcast bank-level official (MIR) interest rate statistics, available only several weeks later. By using both regression analysis and machine learning algorithms, we show that the rates offered have significant predictive content for fixed-rate contracts, also after controlling for time-varying demand conditions, market reference rates, and unobserved time-invariant bank characteristics. Machine learning algorithms provide further improvements over regression models in out of sample predictions.","PeriodicalId":12014,"journal":{"name":"ERN: Microeconometric Studies of Housing Markets (Topic)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"What Can We Learn About Mortgage Supply from Online Data?\",\"authors\":\"A. Carella, Federica Ciocchetta, F. Signoretti, V. Michelangeli\",\"doi\":\"10.2139/ssrn.3746190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit a novel dataset on mortgages offered by banks through Italy’s main online mortgage broker, which works with banks representing over 80 per cent of mortgages granted, to gain an up-to-date assessment of loan supply conditions. Characteristics of mortgages are reported for about 85,000 borrower-contract profiles, constant over time, available at the beginning of each month starting from March 2018. We document that riskier applications, characterized by high loan-to-value ratios and long maturity, are, on average, offered by a smaller number of banks that charge higher interest rates. Online banks tend to provide better price conditions than traditional intermediaries. We use the online rates offered to nowcast bank-level official (MIR) interest rate statistics, available only several weeks later. By using both regression analysis and machine learning algorithms, we show that the rates offered have significant predictive content for fixed-rate contracts, also after controlling for time-varying demand conditions, market reference rates, and unobserved time-invariant bank characteristics. Machine learning algorithms provide further improvements over regression models in out of sample predictions.\",\"PeriodicalId\":12014,\"journal\":{\"name\":\"ERN: Microeconometric Studies of Housing Markets (Topic)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Microeconometric Studies of Housing Markets (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3746190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Microeconometric Studies of Housing Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3746190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What Can We Learn About Mortgage Supply from Online Data?
We exploit a novel dataset on mortgages offered by banks through Italy’s main online mortgage broker, which works with banks representing over 80 per cent of mortgages granted, to gain an up-to-date assessment of loan supply conditions. Characteristics of mortgages are reported for about 85,000 borrower-contract profiles, constant over time, available at the beginning of each month starting from March 2018. We document that riskier applications, characterized by high loan-to-value ratios and long maturity, are, on average, offered by a smaller number of banks that charge higher interest rates. Online banks tend to provide better price conditions than traditional intermediaries. We use the online rates offered to nowcast bank-level official (MIR) interest rate statistics, available only several weeks later. By using both regression analysis and machine learning algorithms, we show that the rates offered have significant predictive content for fixed-rate contracts, also after controlling for time-varying demand conditions, market reference rates, and unobserved time-invariant bank characteristics. Machine learning algorithms provide further improvements over regression models in out of sample predictions.