一种自动生成全厂范围推理引擎的方法

M. Friman
{"title":"一种自动生成全厂范围推理引擎的方法","authors":"M. Friman","doi":"10.1109/ETFA.2014.7005152","DOIUrl":null,"url":null,"abstract":"An automatic modeling method, which creates an inference engine out of raw data, is suggested. The inference engine is used by the automation system to assist operators in decision making. We aim at plant-wide modeling of industrial processes and we therefore prioritize fast and approximate solutions. The suggested method is capable of creating models with hundreds of variables. As a basic structure we utilize multi-dimensional histograms, which at a lower level model the relations of two or three variables. These sub-models are connected in a tree structure. Both the variable selection of sub-models and the tree structure connections are based on Shannon entropy.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":"11 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for automatic generation of plant-wide inference engines\",\"authors\":\"M. Friman\",\"doi\":\"10.1109/ETFA.2014.7005152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic modeling method, which creates an inference engine out of raw data, is suggested. The inference engine is used by the automation system to assist operators in decision making. We aim at plant-wide modeling of industrial processes and we therefore prioritize fast and approximate solutions. The suggested method is capable of creating models with hundreds of variables. As a basic structure we utilize multi-dimensional histograms, which at a lower level model the relations of two or three variables. These sub-models are connected in a tree structure. Both the variable selection of sub-models and the tree structure connections are based on Shannon entropy.\",\"PeriodicalId\":20477,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"volume\":\"11 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2014.7005152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种从原始数据中生成推理引擎的自动建模方法。自动化系统使用推理机辅助操作员进行决策。我们的目标是工厂范围内的工业过程建模,因此我们优先考虑快速和近似的解决方案。建议的方法能够创建包含数百个变量的模型。作为一种基本结构,我们利用多维直方图,它在较低的水平上对两个或三个变量的关系进行建模。这些子模型以树形结构连接。子模型的变量选择和树形结构连接都是基于香农熵的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for automatic generation of plant-wide inference engines
An automatic modeling method, which creates an inference engine out of raw data, is suggested. The inference engine is used by the automation system to assist operators in decision making. We aim at plant-wide modeling of industrial processes and we therefore prioritize fast and approximate solutions. The suggested method is capable of creating models with hundreds of variables. As a basic structure we utilize multi-dimensional histograms, which at a lower level model the relations of two or three variables. These sub-models are connected in a tree structure. Both the variable selection of sub-models and the tree structure connections are based on Shannon entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信