云数据中心虚拟机实时分配建模与仿真

S. Jason
{"title":"云数据中心虚拟机实时分配建模与仿真","authors":"S. Jason","doi":"10.35940/ijeat.e4182.0612523","DOIUrl":null,"url":null,"abstract":"For dynamic resource scheduling in cloud data centers, a novel lightweight simulation system is proposed; two existing simulation systems at the application level for cloud computing are reviewed; and results gained using the suggested simulation system are examined and discussed. The usage of resources and energy efficiency in cloud data centers can be improved by load balancing and the consolidation of virtual machines. An aspect of dynamic virtual machine consolidation that directly affects resource usage and the quality of service the system is delivering is the timing of when it is ideal to reallocate Virtual Machines from an overloaded host [1]. Because server overloads result in a lack of resources and a decline in application performance, they have an impact on quality of service. In order to determine the best answer, existing approaches to the problem of host overload detection typically rely on statistical analysis inspired by nature. These strategies' drawbacks include the fact that they provide less-than-ideal outcomes and prevent the explicit articulation of a Quality-of-Service target. By optimizing the mean inter-migration time under the defined Quality of Service target ideally, we present a novel method for detecting host overload for any stationary workload that is known and a particular state configuration [2]. We demonstrate that our technique exceeds the best benchmark algorithm and offers over 88%of the performance of the ideal offline algorithm through simulations with real-world workload traces from more than a thousand Virtual Machines.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center\",\"authors\":\"S. Jason\",\"doi\":\"10.35940/ijeat.e4182.0612523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For dynamic resource scheduling in cloud data centers, a novel lightweight simulation system is proposed; two existing simulation systems at the application level for cloud computing are reviewed; and results gained using the suggested simulation system are examined and discussed. The usage of resources and energy efficiency in cloud data centers can be improved by load balancing and the consolidation of virtual machines. An aspect of dynamic virtual machine consolidation that directly affects resource usage and the quality of service the system is delivering is the timing of when it is ideal to reallocate Virtual Machines from an overloaded host [1]. Because server overloads result in a lack of resources and a decline in application performance, they have an impact on quality of service. In order to determine the best answer, existing approaches to the problem of host overload detection typically rely on statistical analysis inspired by nature. These strategies' drawbacks include the fact that they provide less-than-ideal outcomes and prevent the explicit articulation of a Quality-of-Service target. By optimizing the mean inter-migration time under the defined Quality of Service target ideally, we present a novel method for detecting host overload for any stationary workload that is known and a particular state configuration [2]. We demonstrate that our technique exceeds the best benchmark algorithm and offers over 88%of the performance of the ideal offline algorithm through simulations with real-world workload traces from more than a thousand Virtual Machines.\",\"PeriodicalId\":13981,\"journal\":{\"name\":\"International Journal of Engineering and Advanced Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Advanced Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijeat.e4182.0612523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.e4182.0612523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对云数据中心的动态资源调度问题,提出了一种新型的轻量级仿真系统;回顾了两个现有的云计算应用层模拟系统;并对所提出的仿真系统所得到的结果进行了检验和讨论。云数据中心的资源使用和能源效率可以通过负载平衡和虚拟机整合得到改善。动态虚拟机整合直接影响资源使用和系统提供的服务质量的一个方面是,何时从过载的主机重新分配虚拟机是理想的时机[1]。由于服务器过载会导致资源不足和应用程序性能下降,因此会影响服务质量。为了确定最佳答案,现有的主机过载检测问题的方法通常依赖于受自然启发的统计分析。这些策略的缺点包括它们提供的结果不太理想,并且阻碍了服务质量目标的明确表达。通过优化定义的理想服务质量目标下的平均迁移时间,我们提出了一种新方法,用于检测已知的任何固定工作负载和特定状态配置的主机过载[2]。我们证明了我们的技术超过了最好的基准算法,并且通过对来自一千多个虚拟机的真实工作负载跟踪的模拟,提供了超过88%的理想离线算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center
For dynamic resource scheduling in cloud data centers, a novel lightweight simulation system is proposed; two existing simulation systems at the application level for cloud computing are reviewed; and results gained using the suggested simulation system are examined and discussed. The usage of resources and energy efficiency in cloud data centers can be improved by load balancing and the consolidation of virtual machines. An aspect of dynamic virtual machine consolidation that directly affects resource usage and the quality of service the system is delivering is the timing of when it is ideal to reallocate Virtual Machines from an overloaded host [1]. Because server overloads result in a lack of resources and a decline in application performance, they have an impact on quality of service. In order to determine the best answer, existing approaches to the problem of host overload detection typically rely on statistical analysis inspired by nature. These strategies' drawbacks include the fact that they provide less-than-ideal outcomes and prevent the explicit articulation of a Quality-of-Service target. By optimizing the mean inter-migration time under the defined Quality of Service target ideally, we present a novel method for detecting host overload for any stationary workload that is known and a particular state configuration [2]. We demonstrate that our technique exceeds the best benchmark algorithm and offers over 88%of the performance of the ideal offline algorithm through simulations with real-world workload traces from more than a thousand Virtual Machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信