生物神经网络的约束及其在人工智能应用中的考虑

Richard Stafford
{"title":"生物神经网络的约束及其在人工智能应用中的考虑","authors":"Richard Stafford","doi":"10.1155/2010/845723","DOIUrl":null,"url":null,"abstract":"Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances). Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Constraints of Biological Neural Networks and Their Consideration in AI Applications\",\"authors\":\"Richard Stafford\",\"doi\":\"10.1155/2010/845723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances). Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/845723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/845723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物有机体不会进化到完美,而是为了在其生态位中与其他生物竞争,从而生存和繁殖。本文回顾了对不完美生物体的限制,特别是对它们的神经系统和准确捕获和处理信息的能力的限制。通过了解神经元物理特性的生物学限制,可以制作更简单和更有效的人工神经网络(例如,尖峰网络将比梯度电位网络传输更少的信息,由于长距离携带电荷的限制,尖峰只发生在自然界中)。此外,了解动物的行为和生态约束可以理解生物启发解决方案的局限性,也可以理解为什么生物启发解决方案可能失败以及如何纠正这些失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraints of Biological Neural Networks and Their Consideration in AI Applications
Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances). Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信