Weicheng Song, Aiqing Feng, Guojie Wang, Qixia Zhang, Wen Dai, Xikun Wei, Yifan Hu, S. Amankwah, Feihong Zhou, Yi Liu
{"title":"基于多个深度学习网络的Sentinel-2图像双目标作物映射","authors":"Weicheng Song, Aiqing Feng, Guojie Wang, Qixia Zhang, Wen Dai, Xikun Wei, Yifan Hu, S. Amankwah, Feihong Zhou, Yi Liu","doi":"10.3390/rs15133417","DOIUrl":null,"url":null,"abstract":"Accurate assessment of the extent of crop distribution and mapping different crop types are essential for monitoring and managing modern agriculture. Medium and high spatial resolution remote sensing (RS) for Earth observation and deep learning (DL) constitute one of the most major and effective tools for crop mapping. In this study, we used high-resolution Sentinel-2 imagery from Google Earth Engine (GEE) to map paddy rice and winter wheat in the Bengbu city of Anhui Province, China. We compared the performance of different popular DL backbone networks with the traditional machine learning (ML) methods, including HRNet, MobileNet, Xception, and Swin Transformer, within the improved DeepLabv3+ architecture, Segformer and random forest (RF). The results showed that the Segformer based on the combination of the Transformer architecture encoder and the lightweight multilayer perceptron (MLP) decoder achieved an overall accuracy (OA) value of 91.06%, a mean F1 Score (mF1) value of 89.26% and a mean Intersection over Union (mIoU) value of 80.70%. The Segformer outperformed other DL methods by combining the results of multiple evaluation metrics. Except for Swin Transformer, which was slightly lower than RF in OA, all DL methods significantly outperformed RF methods in accuracy for the main mapping objects, with mIoU improving by about 13.5~26%. The predicted images of paddy rice and winter wheat from the Segformer were characterized by high mapping accuracy, clear field edges, distinct detail features and a low false classification rate. Consequently, DL is an efficient option for fast and accurate mapping of paddy rice and winter wheat based on RS imagery.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple Deep Learning Networks\",\"authors\":\"Weicheng Song, Aiqing Feng, Guojie Wang, Qixia Zhang, Wen Dai, Xikun Wei, Yifan Hu, S. Amankwah, Feihong Zhou, Yi Liu\",\"doi\":\"10.3390/rs15133417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate assessment of the extent of crop distribution and mapping different crop types are essential for monitoring and managing modern agriculture. Medium and high spatial resolution remote sensing (RS) for Earth observation and deep learning (DL) constitute one of the most major and effective tools for crop mapping. In this study, we used high-resolution Sentinel-2 imagery from Google Earth Engine (GEE) to map paddy rice and winter wheat in the Bengbu city of Anhui Province, China. We compared the performance of different popular DL backbone networks with the traditional machine learning (ML) methods, including HRNet, MobileNet, Xception, and Swin Transformer, within the improved DeepLabv3+ architecture, Segformer and random forest (RF). The results showed that the Segformer based on the combination of the Transformer architecture encoder and the lightweight multilayer perceptron (MLP) decoder achieved an overall accuracy (OA) value of 91.06%, a mean F1 Score (mF1) value of 89.26% and a mean Intersection over Union (mIoU) value of 80.70%. The Segformer outperformed other DL methods by combining the results of multiple evaluation metrics. Except for Swin Transformer, which was slightly lower than RF in OA, all DL methods significantly outperformed RF methods in accuracy for the main mapping objects, with mIoU improving by about 13.5~26%. The predicted images of paddy rice and winter wheat from the Segformer were characterized by high mapping accuracy, clear field edges, distinct detail features and a low false classification rate. Consequently, DL is an efficient option for fast and accurate mapping of paddy rice and winter wheat based on RS imagery.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
准确评估作物分布范围和绘制不同作物类型的地图对于监测和管理现代农业至关重要。中、高空间分辨率遥感(RS)对地观测和深度学习(DL)是作物制图最主要、最有效的工具之一。在这项研究中,我们使用来自Google Earth Engine (GEE)的高分辨率Sentinel-2图像对中国安徽省蚌埠市的水稻和冬小麦进行了绘制。我们在改进的DeepLabv3+架构、Segformer和随机森林(RF)中比较了不同流行的深度学习骨干网络与传统机器学习(ML)方法的性能,包括HRNet、MobileNet、Xception和Swin Transformer。结果表明,基于Transformer架构编码器和轻量级多层感知器(MLP)解码器组合的Segformer总体精度(OA)值为91.06%,平均F1 Score (mF1)值为89.26%,平均Intersection over Union (mIoU)值为80.70%。Segformer通过结合多个评估指标的结果优于其他深度学习方法。除Swin Transformer在OA中略低于RF外,所有DL方法在主要映射对象的精度上均显著优于RF方法,mIoU提高约13.5~26%。利用Segformer预测的水稻和冬小麦图像具有成图精度高、田边清晰、细节特征鲜明、误分类率低等特点。因此,深度学习是一种基于遥感影像快速准确定位水稻和冬小麦的有效选择。
Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple Deep Learning Networks
Accurate assessment of the extent of crop distribution and mapping different crop types are essential for monitoring and managing modern agriculture. Medium and high spatial resolution remote sensing (RS) for Earth observation and deep learning (DL) constitute one of the most major and effective tools for crop mapping. In this study, we used high-resolution Sentinel-2 imagery from Google Earth Engine (GEE) to map paddy rice and winter wheat in the Bengbu city of Anhui Province, China. We compared the performance of different popular DL backbone networks with the traditional machine learning (ML) methods, including HRNet, MobileNet, Xception, and Swin Transformer, within the improved DeepLabv3+ architecture, Segformer and random forest (RF). The results showed that the Segformer based on the combination of the Transformer architecture encoder and the lightweight multilayer perceptron (MLP) decoder achieved an overall accuracy (OA) value of 91.06%, a mean F1 Score (mF1) value of 89.26% and a mean Intersection over Union (mIoU) value of 80.70%. The Segformer outperformed other DL methods by combining the results of multiple evaluation metrics. Except for Swin Transformer, which was slightly lower than RF in OA, all DL methods significantly outperformed RF methods in accuracy for the main mapping objects, with mIoU improving by about 13.5~26%. The predicted images of paddy rice and winter wheat from the Segformer were characterized by high mapping accuracy, clear field edges, distinct detail features and a low false classification rate. Consequently, DL is an efficient option for fast and accurate mapping of paddy rice and winter wheat based on RS imagery.