RPGPref:使用游戏风格偏好来模拟玩家行动和选择的计划启发式

Eric W. Lang, R. Young
{"title":"RPGPref:使用游戏风格偏好来模拟玩家行动和选择的计划启发式","authors":"Eric W. Lang, R. Young","doi":"10.1609/aiide.v18i1.21956","DOIUrl":null,"url":null,"abstract":"Recent work extending planning algorithms that reason about action and change has been successful at supporting game design, player modeling, and story generation. Incorporating agent preferences over actions and propositions into a planning process allows for a more accurate prediction of what a human might do when solving a problem like playing through a game level. This paper presents the preference-based planning heuristic RPGPref which uses relaxed plan graphs (RPGs) and preference sets to guide a planner toward a preference-conforming path to its goal. A human subjects evaluation confirms that RPGPref successfully guides the planning process toward solution plans that recognizably match and differentiate player playstyles.","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"8 1","pages":"129-136"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RPGPref: A Planning Heuristic That Uses Playstyle Preferences to Model Player Action and Choice\",\"authors\":\"Eric W. Lang, R. Young\",\"doi\":\"10.1609/aiide.v18i1.21956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work extending planning algorithms that reason about action and change has been successful at supporting game design, player modeling, and story generation. Incorporating agent preferences over actions and propositions into a planning process allows for a more accurate prediction of what a human might do when solving a problem like playing through a game level. This paper presents the preference-based planning heuristic RPGPref which uses relaxed plan graphs (RPGs) and preference sets to guide a planner toward a preference-conforming path to its goal. A human subjects evaluation confirms that RPGPref successfully guides the planning process toward solution plans that recognizably match and differentiate player playstyles.\",\"PeriodicalId\":92576,\"journal\":{\"name\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"volume\":\"8 1\",\"pages\":\"129-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v18i1.21956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v18i1.21956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近关于行动和变化的计划算法的扩展工作在支持游戏设计、玩家建模和故事生成方面取得了成功。将代理偏好与行动和命题结合到计划过程中,可以更准确地预测人类在解决问题(如玩游戏关卡)时可能会做什么。本文提出了一种基于偏好的规划启发式算法RPGPref,该算法使用宽松规划图和偏好集来引导规划者通过符合偏好的路径到达目标。人类受试者评估证实,RPGPref成功地将计划过程引向了能够识别匹配和区分玩家游戏风格的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RPGPref: A Planning Heuristic That Uses Playstyle Preferences to Model Player Action and Choice
Recent work extending planning algorithms that reason about action and change has been successful at supporting game design, player modeling, and story generation. Incorporating agent preferences over actions and propositions into a planning process allows for a more accurate prediction of what a human might do when solving a problem like playing through a game level. This paper presents the preference-based planning heuristic RPGPref which uses relaxed plan graphs (RPGs) and preference sets to guide a planner toward a preference-conforming path to its goal. A human subjects evaluation confirms that RPGPref successfully guides the planning process toward solution plans that recognizably match and differentiate player playstyles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信