G. Cancro, W. Innanen, R. Turner, C. Monaco, M. Trela
{"title":"航天器自主系统的可上传可执行规范概念","authors":"G. Cancro, W. Innanen, R. Turner, C. Monaco, M. Trela","doi":"10.1109/AERO.2007.352802","DOIUrl":null,"url":null,"abstract":"Current spacecraft autonomy systems suffer from two main problems. First, autonomy designs cannot be adequately reviewed by system engineers, resulting in a potential loss of desired system behavior between system-level requirements and software implementation. Second, current autonomy systems cannot fully assess the systems-level impact of modifications and then quickly and safely upload those modifications to the spacecraft pre-and post-launch. These problems are addressed by the development of executable specification techniques to directly support system engineers with formalized models that translate into operational functionality. This paper describes a concept of combining a standard executable specification technique with a concept of software design using uploadable forms. This paper goes on to describe the features of this concept which include: interactive visual design and display capabilities that allow any domain expert to understand and/or perform the design; operational support capabilities that allow the on-board autonomy functionality to be modified or disabled in real-time without patching or modifying existing code; and graphical stand-alone simulation and automated verification capabilities that allow autonomy designs to proven safe prior to upload.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"36 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Uploadable Executable Specification Concept for Spacecraft Autonomy Systems\",\"authors\":\"G. Cancro, W. Innanen, R. Turner, C. Monaco, M. Trela\",\"doi\":\"10.1109/AERO.2007.352802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current spacecraft autonomy systems suffer from two main problems. First, autonomy designs cannot be adequately reviewed by system engineers, resulting in a potential loss of desired system behavior between system-level requirements and software implementation. Second, current autonomy systems cannot fully assess the systems-level impact of modifications and then quickly and safely upload those modifications to the spacecraft pre-and post-launch. These problems are addressed by the development of executable specification techniques to directly support system engineers with formalized models that translate into operational functionality. This paper describes a concept of combining a standard executable specification technique with a concept of software design using uploadable forms. This paper goes on to describe the features of this concept which include: interactive visual design and display capabilities that allow any domain expert to understand and/or perform the design; operational support capabilities that allow the on-board autonomy functionality to be modified or disabled in real-time without patching or modifying existing code; and graphical stand-alone simulation and automated verification capabilities that allow autonomy designs to proven safe prior to upload.\",\"PeriodicalId\":6295,\"journal\":{\"name\":\"2007 IEEE Aerospace Conference\",\"volume\":\"36 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2007.352802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2007.352802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uploadable Executable Specification Concept for Spacecraft Autonomy Systems
Current spacecraft autonomy systems suffer from two main problems. First, autonomy designs cannot be adequately reviewed by system engineers, resulting in a potential loss of desired system behavior between system-level requirements and software implementation. Second, current autonomy systems cannot fully assess the systems-level impact of modifications and then quickly and safely upload those modifications to the spacecraft pre-and post-launch. These problems are addressed by the development of executable specification techniques to directly support system engineers with formalized models that translate into operational functionality. This paper describes a concept of combining a standard executable specification technique with a concept of software design using uploadable forms. This paper goes on to describe the features of this concept which include: interactive visual design and display capabilities that allow any domain expert to understand and/or perform the design; operational support capabilities that allow the on-board autonomy functionality to be modified or disabled in real-time without patching or modifying existing code; and graphical stand-alone simulation and automated verification capabilities that allow autonomy designs to proven safe prior to upload.