3D手势识别的一个例子

Myoung-Kyu Sohn, Sang-Heon Lee, Dong-Ju Kim, Byungmin Kim, Hyunduk Kim
{"title":"3D手势识别的一个例子","authors":"Myoung-Kyu Sohn, Sang-Heon Lee, Dong-Ju Kim, Byungmin Kim, Hyunduk Kim","doi":"10.1109/ICCE.2013.6486844","DOIUrl":null,"url":null,"abstract":"In a typical recognition system, the inclusion of more training data is likely to increase the recognition rate. However, it is not easy to obtain large training sets. Focusing on practical applicability such as controlling home appliances, we propose a hand gesture recognition method from one example that is computationally efficient and can be easily implemented. 3D hand motion trajectory is achieved from a depth camera and then normalized for translation invariant feature extraction. Based on the simple K-NN classifier, we develop a pattern matching method by combining the DTW (Dynamic Time Warping) algorithm and a statistical measure for similarity between two random vectors. We conducted computational experiments on hand gesture data and compared the results with those derived via conventional DTW recognition.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"70 1","pages":"171-172"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"3D hand gesture recognition from one example\",\"authors\":\"Myoung-Kyu Sohn, Sang-Heon Lee, Dong-Ju Kim, Byungmin Kim, Hyunduk Kim\",\"doi\":\"10.1109/ICCE.2013.6486844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a typical recognition system, the inclusion of more training data is likely to increase the recognition rate. However, it is not easy to obtain large training sets. Focusing on practical applicability such as controlling home appliances, we propose a hand gesture recognition method from one example that is computationally efficient and can be easily implemented. 3D hand motion trajectory is achieved from a depth camera and then normalized for translation invariant feature extraction. Based on the simple K-NN classifier, we develop a pattern matching method by combining the DTW (Dynamic Time Warping) algorithm and a statistical measure for similarity between two random vectors. We conducted computational experiments on hand gesture data and compared the results with those derived via conventional DTW recognition.\",\"PeriodicalId\":6432,\"journal\":{\"name\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"70 1\",\"pages\":\"171-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2013.6486844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在一个典型的识别系统中,包含更多的训练数据可能会提高识别率。然而,获得大的训练集并不容易。着眼于实际应用,例如控制家用电器,我们从一个例子中提出了一种计算效率高且易于实现的手势识别方法。从深度相机获取三维手部运动轨迹,然后归一化进行平移不变特征提取。在简单的K-NN分类器的基础上,我们开发了一种结合DTW (Dynamic Time Warping)算法和两个随机向量之间相似度的统计度量的模式匹配方法。我们对手势数据进行了计算实验,并将结果与传统的DTW识别结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D hand gesture recognition from one example
In a typical recognition system, the inclusion of more training data is likely to increase the recognition rate. However, it is not easy to obtain large training sets. Focusing on practical applicability such as controlling home appliances, we propose a hand gesture recognition method from one example that is computationally efficient and can be easily implemented. 3D hand motion trajectory is achieved from a depth camera and then normalized for translation invariant feature extraction. Based on the simple K-NN classifier, we develop a pattern matching method by combining the DTW (Dynamic Time Warping) algorithm and a statistical measure for similarity between two random vectors. We conducted computational experiments on hand gesture data and compared the results with those derived via conventional DTW recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信