机器学习在螺旋表面标记物分类中的应用

Chuan-Yu Chang, Hung-Chang Shie
{"title":"机器学习在螺旋表面标记物分类中的应用","authors":"Chuan-Yu Chang, Hung-Chang Shie","doi":"10.1109/ICCE-TW.2016.7520948","DOIUrl":null,"url":null,"abstract":"In recent years, many character recognition methods had proposed for recognizing handwritten or computer characters. However, there is few paper discusses marker recognition on screw. General speaking, screw images suffered from the influences of splotch and reflection. How to classify the marker of the screw is still a challenging problem. Therefore, we applied the machine learning to recognize the markers on surface of the screw. Experimental results shown that the proposed method achieves reasonable classification accuracy.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of machine learning to classify surface marker of screw\",\"authors\":\"Chuan-Yu Chang, Hung-Chang Shie\",\"doi\":\"10.1109/ICCE-TW.2016.7520948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many character recognition methods had proposed for recognizing handwritten or computer characters. However, there is few paper discusses marker recognition on screw. General speaking, screw images suffered from the influences of splotch and reflection. How to classify the marker of the screw is still a challenging problem. Therefore, we applied the machine learning to recognize the markers on surface of the screw. Experimental results shown that the proposed method achieves reasonable classification accuracy.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"7 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,针对手写或计算机字符的识别,提出了许多字符识别方法。然而,关于螺旋上的标记识别的研究却很少。一般来说,螺旋图像受到色斑和反射的影响。如何对螺钉的标记进行分类仍然是一个具有挑战性的问题。因此,我们使用机器学习来识别螺钉表面的标记。实验结果表明,该方法达到了合理的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of machine learning to classify surface marker of screw
In recent years, many character recognition methods had proposed for recognizing handwritten or computer characters. However, there is few paper discusses marker recognition on screw. General speaking, screw images suffered from the influences of splotch and reflection. How to classify the marker of the screw is still a challenging problem. Therefore, we applied the machine learning to recognize the markers on surface of the screw. Experimental results shown that the proposed method achieves reasonable classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信