准确预测能源系统资产的健康状况

Wenshuo Tang, M. Andoni, V. Robu, D. Flynn
{"title":"准确预测能源系统资产的健康状况","authors":"Wenshuo Tang, M. Andoni, V. Robu, D. Flynn","doi":"10.1109/ISCAS.2018.8351842","DOIUrl":null,"url":null,"abstract":"In this paper we present a review into data driven prognostics and its relevance to resilience in energy systems. A data driven remaining useful life prediction for Li-ion batteries utilizing data analysis via a relevance vector machine (RVM) model is shown to be within 5% accuracy when applied to large lifecycle datasets. Results demonstrate that due to the agile nature of prognostic models and their accuracy, prognostics and health management methods will be vital to resilient and sustainable energy systems.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"27 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Accurately Forecasting the Health of Energy System Assets\",\"authors\":\"Wenshuo Tang, M. Andoni, V. Robu, D. Flynn\",\"doi\":\"10.1109/ISCAS.2018.8351842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a review into data driven prognostics and its relevance to resilience in energy systems. A data driven remaining useful life prediction for Li-ion batteries utilizing data analysis via a relevance vector machine (RVM) model is shown to be within 5% accuracy when applied to large lifecycle datasets. Results demonstrate that due to the agile nature of prognostic models and their accuracy, prognostics and health management methods will be vital to resilient and sustainable energy systems.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"27 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了对数据驱动的预测及其与能源系统弹性的相关性的回顾。当应用于大型生命周期数据集时,通过相关向量机(RVM)模型利用数据分析对锂离子电池进行数据驱动的剩余使用寿命预测,其精度在5%以内。结果表明,由于预测模型的敏捷性及其准确性,预测和健康管理方法对弹性和可持续能源系统至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurately Forecasting the Health of Energy System Assets
In this paper we present a review into data driven prognostics and its relevance to resilience in energy systems. A data driven remaining useful life prediction for Li-ion batteries utilizing data analysis via a relevance vector machine (RVM) model is shown to be within 5% accuracy when applied to large lifecycle datasets. Results demonstrate that due to the agile nature of prognostic models and their accuracy, prognostics and health management methods will be vital to resilient and sustainable energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信