基于双词级增强的文本聚类

Bo Cheng, Ximing Li, Yi Chang
{"title":"基于双词级增强的文本聚类","authors":"Bo Cheng, Ximing Li, Yi Chang","doi":"10.1609/aaai.v37i6.25868","DOIUrl":null,"url":null,"abstract":"The pre-trained language models, e.g., ELMo and BERT, have recently achieved promising performance improvement in a wide range of NLP tasks, because they can output strong contextualized embedded features of words. Inspired by their great success, in this paper we target at fine-tuning them to effectively handle the text clustering task, i.e., a classic and fundamental challenge in machine learning. Accordingly, we propose a novel BERT-based method, namely Text Clustering with Dual Word-level Augmentation (TCDWA). To be specific, we formulate a self-training objective and enhance it with a dual word-level augmentation technique. First, we suppose that each text contains several most informative words, called anchor words, supporting the full text semantics. We use the embedded features of anchor words as augmented data, which are selected by ranking the norm-based attention weights of words. Second, we formulate an expectation form of word augmentation, which is equivalent to generating infinite augmented features, and further suggest a tractable approximation of Taylor expansion for efficient optimization. To evaluate the effectiveness of TCDWA, we conduct extensive experiments on several benchmark text datasets. The results demonstrate that TCDWA consistently outperforms the state-of-the-art baseline methods. Code available: https://github.com/BoCheng-96/TC-DWA.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"66 1","pages":"7113-7121"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TC-DWA: Text Clustering with Dual Word-Level Augmentation\",\"authors\":\"Bo Cheng, Ximing Li, Yi Chang\",\"doi\":\"10.1609/aaai.v37i6.25868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pre-trained language models, e.g., ELMo and BERT, have recently achieved promising performance improvement in a wide range of NLP tasks, because they can output strong contextualized embedded features of words. Inspired by their great success, in this paper we target at fine-tuning them to effectively handle the text clustering task, i.e., a classic and fundamental challenge in machine learning. Accordingly, we propose a novel BERT-based method, namely Text Clustering with Dual Word-level Augmentation (TCDWA). To be specific, we formulate a self-training objective and enhance it with a dual word-level augmentation technique. First, we suppose that each text contains several most informative words, called anchor words, supporting the full text semantics. We use the embedded features of anchor words as augmented data, which are selected by ranking the norm-based attention weights of words. Second, we formulate an expectation form of word augmentation, which is equivalent to generating infinite augmented features, and further suggest a tractable approximation of Taylor expansion for efficient optimization. To evaluate the effectiveness of TCDWA, we conduct extensive experiments on several benchmark text datasets. The results demonstrate that TCDWA consistently outperforms the state-of-the-art baseline methods. Code available: https://github.com/BoCheng-96/TC-DWA.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"66 1\",\"pages\":\"7113-7121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i6.25868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i6.25868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预训练的语言模型,例如ELMo和BERT,最近在广泛的NLP任务中取得了有希望的性能改进,因为它们可以输出强上下文嵌入的单词特征。受其巨大成功的启发,在本文中,我们的目标是对它们进行微调,以有效地处理文本聚类任务,即机器学习中的经典和基本挑战。因此,我们提出了一种新的基于bert的方法,即双词级增强文本聚类(TCDWA)。具体地说,我们制定了一个自我训练目标,并通过双词级增强技术来增强它。首先,我们假设每个文本包含几个最有信息量的词,称为锚词,支持全文语义。我们使用锚词的嵌入特征作为增强数据,通过对基于规范的词的注意权重排序来选择锚词。其次,我们提出了一种期望形式的词增广,这相当于产生无限的增广特征,并进一步提出了一种易于处理的近似泰勒展开的有效优化。为了评估TCDWA的有效性,我们在几个基准文本数据集上进行了大量的实验。结果表明,TCDWA始终优于最先进的基线方法。可用代码:https://github.com/BoCheng-96/TC-DWA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TC-DWA: Text Clustering with Dual Word-Level Augmentation
The pre-trained language models, e.g., ELMo and BERT, have recently achieved promising performance improvement in a wide range of NLP tasks, because they can output strong contextualized embedded features of words. Inspired by their great success, in this paper we target at fine-tuning them to effectively handle the text clustering task, i.e., a classic and fundamental challenge in machine learning. Accordingly, we propose a novel BERT-based method, namely Text Clustering with Dual Word-level Augmentation (TCDWA). To be specific, we formulate a self-training objective and enhance it with a dual word-level augmentation technique. First, we suppose that each text contains several most informative words, called anchor words, supporting the full text semantics. We use the embedded features of anchor words as augmented data, which are selected by ranking the norm-based attention weights of words. Second, we formulate an expectation form of word augmentation, which is equivalent to generating infinite augmented features, and further suggest a tractable approximation of Taylor expansion for efficient optimization. To evaluate the effectiveness of TCDWA, we conduct extensive experiments on several benchmark text datasets. The results demonstrate that TCDWA consistently outperforms the state-of-the-art baseline methods. Code available: https://github.com/BoCheng-96/TC-DWA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信