聚类持久性图的统计参数选择

Max Kontak, Jules Vidal, Julien Tierny
{"title":"聚类持久性图的统计参数选择","authors":"Max Kontak, Jules Vidal, Julien Tierny","doi":"10.1109/UrgentHPC49580.2019.00007","DOIUrl":null,"url":null,"abstract":"In urgent decision making applications, ensemble simulations are an important way to determine different outcome scenarios based on currently available data. In this paper, we will analyze the output of ensemble simulations by considering socalled persistence diagrams, which are reduced representations of the original data, motivated by the extraction of topological features. Based on a recently published progressive algorithm for the clustering of persistence diagrams, we determine the optimal number of clusters, and therefore the number of significantly different outcome scenarios, by the minimization of established statistical score functions. Furthermore, we present a proof-ofconcept prototype implementation of the statistical selection of the number of clusters and provide the results of an experimental study, where this implementation has been applied to real-world ensemble data sets.","PeriodicalId":6723,"journal":{"name":"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","volume":"9 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Statistical Parameter Selection for Clustering Persistence Diagrams\",\"authors\":\"Max Kontak, Jules Vidal, Julien Tierny\",\"doi\":\"10.1109/UrgentHPC49580.2019.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In urgent decision making applications, ensemble simulations are an important way to determine different outcome scenarios based on currently available data. In this paper, we will analyze the output of ensemble simulations by considering socalled persistence diagrams, which are reduced representations of the original data, motivated by the extraction of topological features. Based on a recently published progressive algorithm for the clustering of persistence diagrams, we determine the optimal number of clusters, and therefore the number of significantly different outcome scenarios, by the minimization of established statistical score functions. Furthermore, we present a proof-ofconcept prototype implementation of the statistical selection of the number of clusters and provide the results of an experimental study, where this implementation has been applied to real-world ensemble data sets.\",\"PeriodicalId\":6723,\"journal\":{\"name\":\"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)\",\"volume\":\"9 1\",\"pages\":\"7-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UrgentHPC49580.2019.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UrgentHPC49580.2019.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在紧急决策应用中,集成模拟是基于当前可用数据确定不同结果情景的重要方法。在本文中,我们将通过考虑所谓的持久性图来分析集成模拟的输出,持久性图是原始数据的简化表示,由拓扑特征的提取驱动。基于最近发表的用于持久性图聚类的渐进式算法,我们通过最小化已建立的统计评分函数来确定聚类的最佳数量,从而确定显著不同结果场景的数量。此外,我们提出了集群数量统计选择的概念验证原型实现,并提供了实验研究的结果,其中该实现已应用于现实世界的集成数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Parameter Selection for Clustering Persistence Diagrams
In urgent decision making applications, ensemble simulations are an important way to determine different outcome scenarios based on currently available data. In this paper, we will analyze the output of ensemble simulations by considering socalled persistence diagrams, which are reduced representations of the original data, motivated by the extraction of topological features. Based on a recently published progressive algorithm for the clustering of persistence diagrams, we determine the optimal number of clusters, and therefore the number of significantly different outcome scenarios, by the minimization of established statistical score functions. Furthermore, we present a proof-ofconcept prototype implementation of the statistical selection of the number of clusters and provide the results of an experimental study, where this implementation has been applied to real-world ensemble data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信