{"title":"关于一个包含k, t实现的图形对极值问题","authors":"Jianhua Yin, Bing Wang","doi":"10.7151/dmgt.2375","DOIUrl":null,"url":null,"abstract":"Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"33 1","pages":"437-444"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"About an extremal problem of bigraphic pairs with a realization containing Ks, t\",\"authors\":\"Jianhua Yin, Bing Wang\",\"doi\":\"10.7151/dmgt.2375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"33 1\",\"pages\":\"437-444\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2375\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2375","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
About an extremal problem of bigraphic pairs with a realization containing Ks, t
Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.