关于一个包含k, t实现的图形对极值问题

Pub Date : 2023-01-01 DOI:10.7151/dmgt.2375
Jianhua Yin, Bing Wang
{"title":"关于一个包含k, t实现的图形对极值问题","authors":"Jianhua Yin, Bing Wang","doi":"10.7151/dmgt.2375","DOIUrl":null,"url":null,"abstract":"Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"About an extremal problem of bigraphic pairs with a realization containing Ks, t\",\"authors\":\"Jianhua Yin, Bing Wang\",\"doi\":\"10.7151/dmgt.2375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设π = (f1,…)调频;1、……, gn),其中f1,…, FM和g1,…, gn是两个非负整数的非递增序列。对π = (f1,…)调频;1、……,如果存在一个简单二部图G = (X∪Y,E)使得f1,…, FM和g1,…, gn分别是X和Y中顶点的度数。在这种情况下,G被称为π的一个实现。如果π的某些实现包含Ks,t(在大小为m的部分中有s个顶点,在大小为n的部分中有t个顶点),我们说π是一个潜在的k,t-图对。数学。图论29(2009)583-596]定义σ(Ks,t,m, n)为最小整数k,使得每个图对π = (f1,…)调频;1、……, gn)当σ(π) = f1+···+fm≥k时,可能是k,t图。他们确定了n≥m≥9st时σ(Ks,t,m, n)。本文首先给出了π是否为潜在的k,t图对的一个判定过程和两个充分条件。然后,我们确定了n≥m≥s和n≥(s+ 1)t - (2s - 1)t+ s - 1时的σ(Ks,t,m, n)。这为费拉拉等人的问题提供了一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
About an extremal problem of bigraphic pairs with a realization containing Ks, t
Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信