分数阶多孔介质方程解的规律性

IF 1.2 4区 数学 Q1 MATHEMATICS
C. Imbert, R. Tarhini, Franccois Vigneron
{"title":"分数阶多孔介质方程解的规律性","authors":"C. Imbert, R. Tarhini, Franccois Vigneron","doi":"10.4171/ifb/445","DOIUrl":null,"url":null,"abstract":"This article is concerned with a porous medium equation whose pressure law is both nonlinear and nonlocal, namely $\\partial_t u = { \\nabla \\cdot} \\left(u \\nabla(-\\Delta)^{\\frac{\\alpha}{2}-1}u^{m-1} \\right)$ where $u:\\mathbb{R}_+\\times \\mathbb{R}^N \\to \\mathbb{R}_+$, for $0<\\alpha<2$ and $m\\geq2$. We prove that the $L^1\\cap L^\\infty$ weak solutions constructed by Biler, Imbert and Karch (2015) are locally Holder-continuous in time and space. In this article, the classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main ingredients are the derivation of local energy estimates and a so-called \"intermediate value lemma\". For $\\alpha\\leq1$, we adapt the proof of Caffarelli, Soria and Vazquez (2013), who treated the case of a linear pressure law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the energy estimates.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regularity of solutions of a fractional porous medium equation\",\"authors\":\"C. Imbert, R. Tarhini, Franccois Vigneron\",\"doi\":\"10.4171/ifb/445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with a porous medium equation whose pressure law is both nonlinear and nonlocal, namely $\\\\partial_t u = { \\\\nabla \\\\cdot} \\\\left(u \\\\nabla(-\\\\Delta)^{\\\\frac{\\\\alpha}{2}-1}u^{m-1} \\\\right)$ where $u:\\\\mathbb{R}_+\\\\times \\\\mathbb{R}^N \\\\to \\\\mathbb{R}_+$, for $0<\\\\alpha<2$ and $m\\\\geq2$. We prove that the $L^1\\\\cap L^\\\\infty$ weak solutions constructed by Biler, Imbert and Karch (2015) are locally Holder-continuous in time and space. In this article, the classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main ingredients are the derivation of local energy estimates and a so-called \\\"intermediate value lemma\\\". For $\\\\alpha\\\\leq1$, we adapt the proof of Caffarelli, Soria and Vazquez (2013), who treated the case of a linear pressure law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the energy estimates.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/445\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/445","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究压力律为非线性非局部的多孔介质方程,即$\partial_t u = { \nabla \cdot} \left(u \nabla(-\Delta)^{\frac{\alpha}{2}-1}u^{m-1} \right)$,其中$u:\mathbb{R}_+\times \mathbb{R}^N \to \mathbb{R}_+$为$0<\alpha<2$和$m\geq2$。我们证明了Biler, Imbert和Karch(2015)构造的$L^1\cap L^\infty$弱解在时间和空间上是局部hold -连续的。在这篇文章中,经典的抛物线De Giorgi技术对偏微分方程的正则性进行了调整,以适应这种特殊的偏微分方程变体。在Caffarelli, Chan和Vasseur(2011)的工作精神中,两个主要成分是本地能量估计的推导和所谓的“中间值引理”。对于$\alpha\leq1$,我们采用了Caffarelli, Soria和Vazquez(2013)的证明,他们处理了线性压力定律的情况。然后我们使用非线性漂移来抵消奇异项,否则会出现在能量估计中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of solutions of a fractional porous medium equation
This article is concerned with a porous medium equation whose pressure law is both nonlinear and nonlocal, namely $\partial_t u = { \nabla \cdot} \left(u \nabla(-\Delta)^{\frac{\alpha}{2}-1}u^{m-1} \right)$ where $u:\mathbb{R}_+\times \mathbb{R}^N \to \mathbb{R}_+$, for $0<\alpha<2$ and $m\geq2$. We prove that the $L^1\cap L^\infty$ weak solutions constructed by Biler, Imbert and Karch (2015) are locally Holder-continuous in time and space. In this article, the classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main ingredients are the derivation of local energy estimates and a so-called "intermediate value lemma". For $\alpha\leq1$, we adapt the proof of Caffarelli, Soria and Vazquez (2013), who treated the case of a linear pressure law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the energy estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信