{"title":"分数阶多孔介质方程解的规律性","authors":"C. Imbert, R. Tarhini, Franccois Vigneron","doi":"10.4171/ifb/445","DOIUrl":null,"url":null,"abstract":"This article is concerned with a porous medium equation whose pressure law is both nonlinear and nonlocal, namely $\\partial_t u = { \\nabla \\cdot} \\left(u \\nabla(-\\Delta)^{\\frac{\\alpha}{2}-1}u^{m-1} \\right)$ where $u:\\mathbb{R}_+\\times \\mathbb{R}^N \\to \\mathbb{R}_+$, for $0<\\alpha<2$ and $m\\geq2$. We prove that the $L^1\\cap L^\\infty$ weak solutions constructed by Biler, Imbert and Karch (2015) are locally Holder-continuous in time and space. In this article, the classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main ingredients are the derivation of local energy estimates and a so-called \"intermediate value lemma\". For $\\alpha\\leq1$, we adapt the proof of Caffarelli, Soria and Vazquez (2013), who treated the case of a linear pressure law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the energy estimates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regularity of solutions of a fractional porous medium equation\",\"authors\":\"C. Imbert, R. Tarhini, Franccois Vigneron\",\"doi\":\"10.4171/ifb/445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with a porous medium equation whose pressure law is both nonlinear and nonlocal, namely $\\\\partial_t u = { \\\\nabla \\\\cdot} \\\\left(u \\\\nabla(-\\\\Delta)^{\\\\frac{\\\\alpha}{2}-1}u^{m-1} \\\\right)$ where $u:\\\\mathbb{R}_+\\\\times \\\\mathbb{R}^N \\\\to \\\\mathbb{R}_+$, for $0<\\\\alpha<2$ and $m\\\\geq2$. We prove that the $L^1\\\\cap L^\\\\infty$ weak solutions constructed by Biler, Imbert and Karch (2015) are locally Holder-continuous in time and space. In this article, the classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main ingredients are the derivation of local energy estimates and a so-called \\\"intermediate value lemma\\\". For $\\\\alpha\\\\leq1$, we adapt the proof of Caffarelli, Soria and Vazquez (2013), who treated the case of a linear pressure law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the energy estimates.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/445\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/445","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Regularity of solutions of a fractional porous medium equation
This article is concerned with a porous medium equation whose pressure law is both nonlinear and nonlocal, namely $\partial_t u = { \nabla \cdot} \left(u \nabla(-\Delta)^{\frac{\alpha}{2}-1}u^{m-1} \right)$ where $u:\mathbb{R}_+\times \mathbb{R}^N \to \mathbb{R}_+$, for $0<\alpha<2$ and $m\geq2$. We prove that the $L^1\cap L^\infty$ weak solutions constructed by Biler, Imbert and Karch (2015) are locally Holder-continuous in time and space. In this article, the classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main ingredients are the derivation of local energy estimates and a so-called "intermediate value lemma". For $\alpha\leq1$, we adapt the proof of Caffarelli, Soria and Vazquez (2013), who treated the case of a linear pressure law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the energy estimates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.