{"title":"多物理场近地表建模集成同步联合全波形反演工作流程","authors":"A. Sirtori, M. Mantovani, A. Epifani, F. Miotti","doi":"10.3997/2214-4609.201900969","DOIUrl":null,"url":null,"abstract":"Summary Building a solid starting model remains one of the most challenging tasks for a robust application of full-waveform inversion (FWI). Several aspects can drive the FWI data optimization towards a local minimum of the cost function, such as the lack of low frequency, the offset limitation, and the presence of alternating high-low velocity layering in the stratigraphic sequence. This risk can be mitigated by geophysically preconditioning the FWI starting model, leveraging multiphysics independent measurement through simultaneous joint inversion. In this multiphysics multiscale approach, the seismic information is valuably coupled with non-seismic observations, with the potential benefit of reducing the non-uniqueness of surface geophysics inversions and increasing the robustness and fitness of the input model for FWI.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated Simultaneous Joint and Full-Waveform Inversion Workflow for Multiphysics Near-Surface Modeling\",\"authors\":\"A. Sirtori, M. Mantovani, A. Epifani, F. Miotti\",\"doi\":\"10.3997/2214-4609.201900969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Building a solid starting model remains one of the most challenging tasks for a robust application of full-waveform inversion (FWI). Several aspects can drive the FWI data optimization towards a local minimum of the cost function, such as the lack of low frequency, the offset limitation, and the presence of alternating high-low velocity layering in the stratigraphic sequence. This risk can be mitigated by geophysically preconditioning the FWI starting model, leveraging multiphysics independent measurement through simultaneous joint inversion. In this multiphysics multiscale approach, the seismic information is valuably coupled with non-seismic observations, with the potential benefit of reducing the non-uniqueness of surface geophysics inversions and increasing the robustness and fitness of the input model for FWI.\",\"PeriodicalId\":6840,\"journal\":{\"name\":\"81st EAGE Conference and Exhibition 2019\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"81st EAGE Conference and Exhibition 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated Simultaneous Joint and Full-Waveform Inversion Workflow for Multiphysics Near-Surface Modeling
Summary Building a solid starting model remains one of the most challenging tasks for a robust application of full-waveform inversion (FWI). Several aspects can drive the FWI data optimization towards a local minimum of the cost function, such as the lack of low frequency, the offset limitation, and the presence of alternating high-low velocity layering in the stratigraphic sequence. This risk can be mitigated by geophysically preconditioning the FWI starting model, leveraging multiphysics independent measurement through simultaneous joint inversion. In this multiphysics multiscale approach, the seismic information is valuably coupled with non-seismic observations, with the potential benefit of reducing the non-uniqueness of surface geophysics inversions and increasing the robustness and fitness of the input model for FWI.