{"title":"2011年西班牙洛尔卡地震经验中钢筋混凝土建筑地震易损性评价的研究进展","authors":"J. Ródenas, A. Tomás, S. García-Ayllón","doi":"10.2495/CMEM-V6-N5-887-898","DOIUrl":null,"url":null,"abstract":"Despite the technical advances in seismic structural design, many regions still present a high level of seismic risk, principally due to the high vulnerability of their buildings. A modification of the empirical method for assessing the seismic vulnerability of reinforced concrete buildings in urban areas is proposed in this contribution. In the RISK-UE LM1 framework, the values of certain behaviour modifiers related to the typological, structural and urban parameters of the buildings have been modified according to a review and analysis of the currently available models and an evaluation of the actual seismic performance of buildings. This provides continuity to the progress of the previous works published to date. The proposal has been applied to the city of Lorca, Spain, for which ample knowledge of the damage occurred in the earthquake of May 11, 2011 is available. Less dispersion between actual observed and estimated damage in buildings is presented in comparison with the previous studies, with a statistical significance of 5%, thus achieving a more accurate evaluation of seismic risk. The new model also provides valuable information to be used in the planning and management of post-earthquake emergency situations when combining with GIS techniques, thus allowing for a better definition of several damage scenarios to enhance the development and urban preparedness in case of further seismic events.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"25 1","pages":"887-898"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ADVANCES IN SEISMIC VULNERABILITY ASSESSMENT OF REINFORCED CONCRETE BUILDINGS APPLIEDTO THE EXPERIENCE OF LORCA (SPAIN) 2011EARTHQUAKE\",\"authors\":\"J. Ródenas, A. Tomás, S. García-Ayllón\",\"doi\":\"10.2495/CMEM-V6-N5-887-898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the technical advances in seismic structural design, many regions still present a high level of seismic risk, principally due to the high vulnerability of their buildings. A modification of the empirical method for assessing the seismic vulnerability of reinforced concrete buildings in urban areas is proposed in this contribution. In the RISK-UE LM1 framework, the values of certain behaviour modifiers related to the typological, structural and urban parameters of the buildings have been modified according to a review and analysis of the currently available models and an evaluation of the actual seismic performance of buildings. This provides continuity to the progress of the previous works published to date. The proposal has been applied to the city of Lorca, Spain, for which ample knowledge of the damage occurred in the earthquake of May 11, 2011 is available. Less dispersion between actual observed and estimated damage in buildings is presented in comparison with the previous studies, with a statistical significance of 5%, thus achieving a more accurate evaluation of seismic risk. The new model also provides valuable information to be used in the planning and management of post-earthquake emergency situations when combining with GIS techniques, thus allowing for a better definition of several damage scenarios to enhance the development and urban preparedness in case of further seismic events.\",\"PeriodicalId\":22520,\"journal\":{\"name\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"volume\":\"25 1\",\"pages\":\"887-898\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/CMEM-V6-N5-887-898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V6-N5-887-898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ADVANCES IN SEISMIC VULNERABILITY ASSESSMENT OF REINFORCED CONCRETE BUILDINGS APPLIEDTO THE EXPERIENCE OF LORCA (SPAIN) 2011EARTHQUAKE
Despite the technical advances in seismic structural design, many regions still present a high level of seismic risk, principally due to the high vulnerability of their buildings. A modification of the empirical method for assessing the seismic vulnerability of reinforced concrete buildings in urban areas is proposed in this contribution. In the RISK-UE LM1 framework, the values of certain behaviour modifiers related to the typological, structural and urban parameters of the buildings have been modified according to a review and analysis of the currently available models and an evaluation of the actual seismic performance of buildings. This provides continuity to the progress of the previous works published to date. The proposal has been applied to the city of Lorca, Spain, for which ample knowledge of the damage occurred in the earthquake of May 11, 2011 is available. Less dispersion between actual observed and estimated damage in buildings is presented in comparison with the previous studies, with a statistical significance of 5%, thus achieving a more accurate evaluation of seismic risk. The new model also provides valuable information to be used in the planning and management of post-earthquake emergency situations when combining with GIS techniques, thus allowing for a better definition of several damage scenarios to enhance the development and urban preparedness in case of further seismic events.