Pengfei Lin, Woo Young Choi, Seung-Hi Lee, C. Chung
{"title":"基于人工势场的模型预测路径规划及其在自动变道中的应用","authors":"Pengfei Lin, Woo Young Choi, Seung-Hi Lee, C. Chung","doi":"10.23919/ICCAS50221.2020.9268380","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a vehicle lane change system using model predictive path planning (MPPP) based on the artificial potential field (APF) for speeding vehicles. It is shown that APF has high performance in real-time obstacle avoidance. However, it remains unpractical for self-driving cars because the point model used for the APF ignores the lateral vehicle dynamics for the lane-keeping system. To resolve the problem, this paper introduces a novel curve-fitting method combined with the APF applied to plan a drivable path for autonomous vehicles in the lane change action. The proposed system was validated through MATLAB/Simulink with the empirical kinematic model. The simulation results indicate that the model predictive path planning algorithm is highly effective in high-speed lane change scenarios to avoid dynamic obstacle vehicles.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"71 1","pages":"731-736"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Model Predictive Path Planning Based on Artificial Potential Field and Its Application to Autonomous Lane Change\",\"authors\":\"Pengfei Lin, Woo Young Choi, Seung-Hi Lee, C. Chung\",\"doi\":\"10.23919/ICCAS50221.2020.9268380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a vehicle lane change system using model predictive path planning (MPPP) based on the artificial potential field (APF) for speeding vehicles. It is shown that APF has high performance in real-time obstacle avoidance. However, it remains unpractical for self-driving cars because the point model used for the APF ignores the lateral vehicle dynamics for the lane-keeping system. To resolve the problem, this paper introduces a novel curve-fitting method combined with the APF applied to plan a drivable path for autonomous vehicles in the lane change action. The proposed system was validated through MATLAB/Simulink with the empirical kinematic model. The simulation results indicate that the model predictive path planning algorithm is highly effective in high-speed lane change scenarios to avoid dynamic obstacle vehicles.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"71 1\",\"pages\":\"731-736\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model Predictive Path Planning Based on Artificial Potential Field and Its Application to Autonomous Lane Change
In this paper, we propose a vehicle lane change system using model predictive path planning (MPPP) based on the artificial potential field (APF) for speeding vehicles. It is shown that APF has high performance in real-time obstacle avoidance. However, it remains unpractical for self-driving cars because the point model used for the APF ignores the lateral vehicle dynamics for the lane-keeping system. To resolve the problem, this paper introduces a novel curve-fitting method combined with the APF applied to plan a drivable path for autonomous vehicles in the lane change action. The proposed system was validated through MATLAB/Simulink with the empirical kinematic model. The simulation results indicate that the model predictive path planning algorithm is highly effective in high-speed lane change scenarios to avoid dynamic obstacle vehicles.