通过XSlit成像了解曼哈顿场景

Jinwei Ye, Yu Ji, Jingyi Yu
{"title":"通过XSlit成像了解曼哈顿场景","authors":"Jinwei Ye, Yu Ji, Jingyi Yu","doi":"10.1109/CVPR.2013.18","DOIUrl":null,"url":null,"abstract":"A Manhattan World (MW) [3] is composed of planar surfaces and parallel lines aligned with three mutually orthogonal principal axes. Traditional MW understanding algorithms rely on geometry priors such as the vanishing points and reference (ground) planes for grouping coplanar structures. In this paper, we present a novel single-image MW reconstruction algorithm from the perspective of non-pinhole cameras. We show that by acquiring the MW using an XSlit camera, we can instantly resolve co planarity ambiguities. Specifically, we prove that parallel 3D lines map to 2D curves in an XSlit image and they converge at an XSlit Vanishing Point (XVP). In addition, if the lines are coplanar, their curved images will intersect at a second common pixel that we call Coplanar Common Point (CCP). CCP is a unique image feature in XSlit cameras that does not exist in pinholes. We present a comprehensive theory to analyze XVPs and CCPs in a MW scene and study how to recover 3D geometry in a complex MW scene from XVPs and CCPs. Finally, we build a prototype XSlit camera by using two layers of cylindrical lenses. Experimental results on both synthetic and real data show that our new XSlit-camera-based solution provides an effective and reliable solution for MW understanding.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"47 1","pages":"81-88"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Manhattan Scene Understanding via XSlit Imaging\",\"authors\":\"Jinwei Ye, Yu Ji, Jingyi Yu\",\"doi\":\"10.1109/CVPR.2013.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Manhattan World (MW) [3] is composed of planar surfaces and parallel lines aligned with three mutually orthogonal principal axes. Traditional MW understanding algorithms rely on geometry priors such as the vanishing points and reference (ground) planes for grouping coplanar structures. In this paper, we present a novel single-image MW reconstruction algorithm from the perspective of non-pinhole cameras. We show that by acquiring the MW using an XSlit camera, we can instantly resolve co planarity ambiguities. Specifically, we prove that parallel 3D lines map to 2D curves in an XSlit image and they converge at an XSlit Vanishing Point (XVP). In addition, if the lines are coplanar, their curved images will intersect at a second common pixel that we call Coplanar Common Point (CCP). CCP is a unique image feature in XSlit cameras that does not exist in pinholes. We present a comprehensive theory to analyze XVPs and CCPs in a MW scene and study how to recover 3D geometry in a complex MW scene from XVPs and CCPs. Finally, we build a prototype XSlit camera by using two layers of cylindrical lenses. Experimental results on both synthetic and real data show that our new XSlit-camera-based solution provides an effective and reliable solution for MW understanding.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"47 1\",\"pages\":\"81-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

曼哈顿世界(Manhattan World, MW)[3]由三个相互正交的主轴组成的平面和平行线组成。传统的毫米波理解算法依赖于几何先验,如消失点和参考(地)面来对共面结构进行分组。本文从非针孔相机的角度出发,提出了一种新的单图像毫瓦重构算法。我们表明,通过使用XSlit相机获取MW,我们可以立即解决共平面模糊性。具体来说,我们证明了平行的3D直线映射到xsl图像中的2D曲线,并且它们收敛于xsl消失点(XVP)。此外,如果这些线共面,它们的曲线图像将在第二个公共像素处相交,我们称之为共面公共点(CCP)。CCP是xslt相机中不存在于针孔中的独特图像特性。我们提出了一种综合理论来分析MW场景中的XVPs和ccp,并研究了如何从XVPs和ccp中恢复复杂MW场景中的3D几何形状。最后,我们通过使用两层圆柱形镜头构建了一个原型xslt相机。在合成数据和实际数据上的实验结果表明,我们的基于xslt相机的新解决方案为MW理解提供了有效可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manhattan Scene Understanding via XSlit Imaging
A Manhattan World (MW) [3] is composed of planar surfaces and parallel lines aligned with three mutually orthogonal principal axes. Traditional MW understanding algorithms rely on geometry priors such as the vanishing points and reference (ground) planes for grouping coplanar structures. In this paper, we present a novel single-image MW reconstruction algorithm from the perspective of non-pinhole cameras. We show that by acquiring the MW using an XSlit camera, we can instantly resolve co planarity ambiguities. Specifically, we prove that parallel 3D lines map to 2D curves in an XSlit image and they converge at an XSlit Vanishing Point (XVP). In addition, if the lines are coplanar, their curved images will intersect at a second common pixel that we call Coplanar Common Point (CCP). CCP is a unique image feature in XSlit cameras that does not exist in pinholes. We present a comprehensive theory to analyze XVPs and CCPs in a MW scene and study how to recover 3D geometry in a complex MW scene from XVPs and CCPs. Finally, we build a prototype XSlit camera by using two layers of cylindrical lenses. Experimental results on both synthetic and real data show that our new XSlit-camera-based solution provides an effective and reliable solution for MW understanding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信