加铜钛合金的热机械加工及物相分析

K. Ukabhai, K. Nape, L. Spotose, M. Mavundla, IA Mwamba, MO Bodunrin, L. Chown, L. Cornish
{"title":"加铜钛合金的热机械加工及物相分析","authors":"K. Ukabhai, K. Nape, L. Spotose, M. Mavundla, IA Mwamba, MO Bodunrin, L. Chown, L. Cornish","doi":"10.36303/satnt.2021cosaami.17","DOIUrl":null,"url":null,"abstract":"In dentistry and orthopaedics, to replace and mend broken bones, any replacement material needs to have: low density, high strength, good biocompatibility and must be able to integrate closely with the bone. Titanium-based alloys have these properties, although currently used alloys contain toxic elements, and commercially pure Ti does not have sufficient strength. Within ten years, 7% of dental implants have complete failure, mainly from bacterial infection. Therefore α + β type Ti-alloys were developed by adding b stabilisers, with similar phase proportions to Ti-6Al-4V without the toxic elements, with Cu additions for antibacterial properties and Ru for corrosion resistance. Deformation behaviour of Ti-6Al-4V and Ti-Ta-Nb Zr alloys were also studied using a Gleeble thermomechanical simulator. The compositions of the new alloys were derived using Thermo-Calc. Ti-8Nb-4Zr alloys had bimodal microstructures and the addition of Cu formed the Ti2Cu phase. The Ti-6Ta-1.5Zr and Ti-6Ta-1.5Zr-0.2Ru alloys with no Cu had coarse α lamellae, whereas the alloys with Cu had parallel α plates. The Gleeble results showed that higher flow stresses were obtained at higher strain rates and lower temperatures, agreeing with literature. At 850 °C, the Ti-6Al-4V alloy had higher flow stresses than Ti-10.1Ta-1.7Nb-1.6Zr. The Ti-6Al-4V and Ti-10.1Ta-1.7Nb-1.6Zr alloys had steady-state flow stresses at 950 °C, and continuous flow softening at 850 °C for both strain rates.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-mechanical processing and phase analysis of titanium alloys with copper additions\",\"authors\":\"K. Ukabhai, K. Nape, L. Spotose, M. Mavundla, IA Mwamba, MO Bodunrin, L. Chown, L. Cornish\",\"doi\":\"10.36303/satnt.2021cosaami.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dentistry and orthopaedics, to replace and mend broken bones, any replacement material needs to have: low density, high strength, good biocompatibility and must be able to integrate closely with the bone. Titanium-based alloys have these properties, although currently used alloys contain toxic elements, and commercially pure Ti does not have sufficient strength. Within ten years, 7% of dental implants have complete failure, mainly from bacterial infection. Therefore α + β type Ti-alloys were developed by adding b stabilisers, with similar phase proportions to Ti-6Al-4V without the toxic elements, with Cu additions for antibacterial properties and Ru for corrosion resistance. Deformation behaviour of Ti-6Al-4V and Ti-Ta-Nb Zr alloys were also studied using a Gleeble thermomechanical simulator. The compositions of the new alloys were derived using Thermo-Calc. Ti-8Nb-4Zr alloys had bimodal microstructures and the addition of Cu formed the Ti2Cu phase. The Ti-6Ta-1.5Zr and Ti-6Ta-1.5Zr-0.2Ru alloys with no Cu had coarse α lamellae, whereas the alloys with Cu had parallel α plates. The Gleeble results showed that higher flow stresses were obtained at higher strain rates and lower temperatures, agreeing with literature. At 850 °C, the Ti-6Al-4V alloy had higher flow stresses than Ti-10.1Ta-1.7Nb-1.6Zr. The Ti-6Al-4V and Ti-10.1Ta-1.7Nb-1.6Zr alloys had steady-state flow stresses at 950 °C, and continuous flow softening at 850 °C for both strain rates.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在牙科和骨科中,为了替换和修复骨折,任何替代材料都需要具有:低密度、高强度、良好的生物相容性,并且必须能够与骨紧密结合。钛基合金具有这些特性,尽管目前使用的合金含有有毒元素,而且商业上纯钛没有足够的强度。在十年内,7%的种植牙完全失败,主要是由于细菌感染。因此,在α + β型钛合金中加入b稳定剂,使其具有与Ti-6Al-4V相似的相比,不含有毒元素,添加Cu以提高抗菌性能,添加Ru以提高耐腐蚀性。利用Gleeble热机械模拟器研究了Ti-6Al-4V和Ti-Ta-Nb - Zr合金的变形行为。用热钙法测定了新合金的成分。Ti-8Nb-4Zr合金具有双峰组织,Cu的加入形成Ti2Cu相。不含Cu的Ti-6Ta-1.5Zr和Ti-6Ta-1.5Zr-0.2 ru合金具有粗糙的α片层,而含Cu的合金具有平行的α片层。Gleeble结果表明,在较高的应变速率和较低的温度下获得较高的流动应力,这与文献一致。850℃时,Ti-6Al-4V合金的流动应力高于Ti-10.1Ta-1.7Nb-1.6Zr。两种应变速率下,Ti-6Al-4V和Ti-10.1Ta-1.7Nb-1.6Zr合金在950℃时具有稳态流动应力,在850℃时具有连续流动软化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-mechanical processing and phase analysis of titanium alloys with copper additions
In dentistry and orthopaedics, to replace and mend broken bones, any replacement material needs to have: low density, high strength, good biocompatibility and must be able to integrate closely with the bone. Titanium-based alloys have these properties, although currently used alloys contain toxic elements, and commercially pure Ti does not have sufficient strength. Within ten years, 7% of dental implants have complete failure, mainly from bacterial infection. Therefore α + β type Ti-alloys were developed by adding b stabilisers, with similar phase proportions to Ti-6Al-4V without the toxic elements, with Cu additions for antibacterial properties and Ru for corrosion resistance. Deformation behaviour of Ti-6Al-4V and Ti-Ta-Nb Zr alloys were also studied using a Gleeble thermomechanical simulator. The compositions of the new alloys were derived using Thermo-Calc. Ti-8Nb-4Zr alloys had bimodal microstructures and the addition of Cu formed the Ti2Cu phase. The Ti-6Ta-1.5Zr and Ti-6Ta-1.5Zr-0.2Ru alloys with no Cu had coarse α lamellae, whereas the alloys with Cu had parallel α plates. The Gleeble results showed that higher flow stresses were obtained at higher strain rates and lower temperatures, agreeing with literature. At 850 °C, the Ti-6Al-4V alloy had higher flow stresses than Ti-10.1Ta-1.7Nb-1.6Zr. The Ti-6Al-4V and Ti-10.1Ta-1.7Nb-1.6Zr alloys had steady-state flow stresses at 950 °C, and continuous flow softening at 850 °C for both strain rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信