学习特定任务的城市区域划分

Hongjian Wang, P. Jenkins, Hua Wei, Fei Wu, Z. Li
{"title":"学习特定任务的城市区域划分","authors":"Hongjian Wang, P. Jenkins, Hua Wei, Fei Wu, Z. Li","doi":"10.1145/3308558.3313704","DOIUrl":null,"url":null,"abstract":"The proliferation of publicly accessible urban data provide new insights on various urban tasks. A frequently used approach is to treat each region as a data sample and build a model over all the regions to observe the correlations between urban features (e.g., demographics) and the target variable (e.g., crime count). To define regions, most existing studies use fixed grids or pre-defined administrative boundaries (e.g., census tracts or community areas). In reality, however, definitions of regions should be different depending on tasks (e.g., regional crime count prediction vs. real estate prices estimation). In this paper, we propose a new problem of task-specific city region partitioning, aiming to find the best partition in a city w.r.t. a given task. We prove this is an NP-hard search problem with no trivial solution. To learn the partition, we first study two variants of Markov Chain Monte Carlo (MCMC). We further propose a reinforcement learning scheme for effective sampling the search space. We conduct experiments on two real datasets in Chicago (i.e., crime count and real estate price) to demonstrate the effectiveness of our proposed method.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning Task-Specific City Region Partition\",\"authors\":\"Hongjian Wang, P. Jenkins, Hua Wei, Fei Wu, Z. Li\",\"doi\":\"10.1145/3308558.3313704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of publicly accessible urban data provide new insights on various urban tasks. A frequently used approach is to treat each region as a data sample and build a model over all the regions to observe the correlations between urban features (e.g., demographics) and the target variable (e.g., crime count). To define regions, most existing studies use fixed grids or pre-defined administrative boundaries (e.g., census tracts or community areas). In reality, however, definitions of regions should be different depending on tasks (e.g., regional crime count prediction vs. real estate prices estimation). In this paper, we propose a new problem of task-specific city region partitioning, aiming to find the best partition in a city w.r.t. a given task. We prove this is an NP-hard search problem with no trivial solution. To learn the partition, we first study two variants of Markov Chain Monte Carlo (MCMC). We further propose a reinforcement learning scheme for effective sampling the search space. We conduct experiments on two real datasets in Chicago (i.e., crime count and real estate price) to demonstrate the effectiveness of our proposed method.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

可公开获取的城市数据的激增为各种城市任务提供了新的见解。一种常用的方法是将每个区域视为一个数据样本,并在所有区域建立一个模型,以观察城市特征(例如人口统计)与目标变量(例如犯罪计数)之间的相关性。为了确定区域,大多数现有研究使用固定网格或预先确定的行政边界(例如,人口普查区或社区区域)。然而,在现实中,区域的定义应该根据任务而有所不同(例如,区域犯罪数量预测与房地产价格估计)。本文提出了一种新的基于任务的城市区域划分问题,目的是在给定任务的基础上寻找城市区域的最佳划分。我们证明了这是一个没有平凡解的NP-hard搜索问题。为了学习划分,我们首先研究了马尔可夫链蒙特卡罗(MCMC)的两个变体。我们进一步提出了一种有效采样搜索空间的强化学习方案。我们在芝加哥的两个真实数据集(即犯罪计数和房地产价格)上进行了实验,以证明我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Task-Specific City Region Partition
The proliferation of publicly accessible urban data provide new insights on various urban tasks. A frequently used approach is to treat each region as a data sample and build a model over all the regions to observe the correlations between urban features (e.g., demographics) and the target variable (e.g., crime count). To define regions, most existing studies use fixed grids or pre-defined administrative boundaries (e.g., census tracts or community areas). In reality, however, definitions of regions should be different depending on tasks (e.g., regional crime count prediction vs. real estate prices estimation). In this paper, we propose a new problem of task-specific city region partitioning, aiming to find the best partition in a city w.r.t. a given task. We prove this is an NP-hard search problem with no trivial solution. To learn the partition, we first study two variants of Markov Chain Monte Carlo (MCMC). We further propose a reinforcement learning scheme for effective sampling the search space. We conduct experiments on two real datasets in Chicago (i.e., crime count and real estate price) to demonstrate the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信