轴孔错位装配柔性腕部机器人建模及连续刚度控制

Du Xu, Tete Hu
{"title":"轴孔错位装配柔性腕部机器人建模及连续刚度控制","authors":"Du Xu, Tete Hu","doi":"10.1177/00202940221090970","DOIUrl":null,"url":null,"abstract":"In this paper, a continuously variable stiffness control strategy for shaft-hole assembly with a compliant wrist is proposed. The compliant wrist adjusts stiffness by changing the cantilever length of a super-elastic Ni-Ti wire. Its core idea is that when the contact force of the robot exceeds a particular value, the wrist adjusts the stiffness and can deform in a specific direction that guarantees assembly, allows a relatively significant misalignment, and produces a small force. The advantage of the proposed strategy is that the shaft-hole assembly status is supervised by calculating the deformation of compliant wrist based on contact force information, this significantly decrease the requirements of shaft-hole alignment accuracy. On this basis, the kinetostatic coupling kinematic and static force model is built and the fuzzy PD stiffness control strategy is designed to realize the desired stiffness of the wrist in various directions. Finally, the shaft-hole assembly experiments under different misalignment error demonstrates the reliability of the wrist, indicating the efficacy of the control method.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and continuous stiffness control of robot with compliant wrist for misalignment shaft-hole assembly\",\"authors\":\"Du Xu, Tete Hu\",\"doi\":\"10.1177/00202940221090970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a continuously variable stiffness control strategy for shaft-hole assembly with a compliant wrist is proposed. The compliant wrist adjusts stiffness by changing the cantilever length of a super-elastic Ni-Ti wire. Its core idea is that when the contact force of the robot exceeds a particular value, the wrist adjusts the stiffness and can deform in a specific direction that guarantees assembly, allows a relatively significant misalignment, and produces a small force. The advantage of the proposed strategy is that the shaft-hole assembly status is supervised by calculating the deformation of compliant wrist based on contact force information, this significantly decrease the requirements of shaft-hole alignment accuracy. On this basis, the kinetostatic coupling kinematic and static force model is built and the fuzzy PD stiffness control strategy is designed to realize the desired stiffness of the wrist in various directions. Finally, the shaft-hole assembly experiments under different misalignment error demonstrates the reliability of the wrist, indicating the efficacy of the control method.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940221090970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940221090970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有柔性腕关节的轴孔总成,提出了一种连续变刚度控制策略。柔性手腕通过改变超弹性镍钛丝的悬臂长度来调节刚度。其核心思想是,当机器人的接触力超过某一特定值时,手腕调节刚度,并可以在特定方向上变形,保证装配,允许相对较大的错位,并产生较小的力。该策略的优点是通过计算基于接触力信息的柔性腕的变形来监督轴孔装配状态,从而大大降低了对轴孔对准精度的要求。在此基础上,建立了动、静耦合模型,设计了模糊PD刚度控制策略,以实现腕部在各个方向的期望刚度。最后,通过不同对中误差下的轴孔装配实验,验证了腕部控制的可靠性,表明了该控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and continuous stiffness control of robot with compliant wrist for misalignment shaft-hole assembly
In this paper, a continuously variable stiffness control strategy for shaft-hole assembly with a compliant wrist is proposed. The compliant wrist adjusts stiffness by changing the cantilever length of a super-elastic Ni-Ti wire. Its core idea is that when the contact force of the robot exceeds a particular value, the wrist adjusts the stiffness and can deform in a specific direction that guarantees assembly, allows a relatively significant misalignment, and produces a small force. The advantage of the proposed strategy is that the shaft-hole assembly status is supervised by calculating the deformation of compliant wrist based on contact force information, this significantly decrease the requirements of shaft-hole alignment accuracy. On this basis, the kinetostatic coupling kinematic and static force model is built and the fuzzy PD stiffness control strategy is designed to realize the desired stiffness of the wrist in various directions. Finally, the shaft-hole assembly experiments under different misalignment error demonstrates the reliability of the wrist, indicating the efficacy of the control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信