基于极值点抽样的高效内存结构凸优化

IF 1.9 Q1 MATHEMATICS, APPLIED
Nimita Shinde, Vishnu Narayanan, J. Saunderson
{"title":"基于极值点抽样的高效内存结构凸优化","authors":"Nimita Shinde, Vishnu Narayanan, J. Saunderson","doi":"10.1137/20m1358037","DOIUrl":null,"url":null,"abstract":"Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an $n\\times n$ matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance matrix is near-feasible and near-optimal for the SDP. We show how to develop such an algorithm by modifying the Frank-Wolfe algorithm to systematically replace the matrix iterates with random vectors. As an application of this approach, we show how to implement the Goemans-Williamson approximation algorithm for \\textsc{MaxCut} using $\\mathcal{O}(n)$ memory in addition to the memory required to store the problem instance. We then extend our approach to deal with a broader range of structured convex optimization problems, replacing decision variables with random extreme points of the feasible region.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"51 1","pages":"787-814"},"PeriodicalIF":1.9000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Memory-Efficient Structured Convex Optimization via Extreme Point Sampling\",\"authors\":\"Nimita Shinde, Vishnu Narayanan, J. Saunderson\",\"doi\":\"10.1137/20m1358037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an $n\\\\times n$ matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance matrix is near-feasible and near-optimal for the SDP. We show how to develop such an algorithm by modifying the Frank-Wolfe algorithm to systematically replace the matrix iterates with random vectors. As an application of this approach, we show how to implement the Goemans-Williamson approximation algorithm for \\\\textsc{MaxCut} using $\\\\mathcal{O}(n)$ memory in addition to the memory required to store the problem instance. We then extend our approach to deal with a broader range of structured convex optimization problems, replacing decision variables with random extreme points of the feasible region.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"51 1\",\"pages\":\"787-814\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1358037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1358037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

在求解半定规划等大规模凸优化问题时,内存是一个关键的计算瓶颈。在本文中,我们关注存储$n\times n$矩阵决策变量是禁止的情况。为了解决这种情况下的SDP,我们开发了一种随机算法,该算法返回一个随机向量,其协方差矩阵对于SDP近似可行且近似最优。我们展示了如何通过修改Frank-Wolfe算法来系统地用随机向量替换矩阵迭代来开发这样的算法。作为这种方法的一个应用,我们将展示如何使用$\mathcal{O}(n)$内存以及存储问题实例所需的内存来实现\textsc{MaxCut}的Goemans-Williamson近似算法。然后,我们扩展了我们的方法来处理更广泛的结构化凸优化问题,用可行域的随机极值点代替决策变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory-Efficient Structured Convex Optimization via Extreme Point Sampling
Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an $n\times n$ matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance matrix is near-feasible and near-optimal for the SDP. We show how to develop such an algorithm by modifying the Frank-Wolfe algorithm to systematically replace the matrix iterates with random vectors. As an application of this approach, we show how to implement the Goemans-Williamson approximation algorithm for \textsc{MaxCut} using $\mathcal{O}(n)$ memory in addition to the memory required to store the problem instance. We then extend our approach to deal with a broader range of structured convex optimization problems, replacing decision variables with random extreme points of the feasible region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信