H. Rahaman, T. Venugopal, S. Penny, D. Behringer, M. Ravichandran, J. Raju, U. Srinivasu, D. Sengupta
{"title":"改进了印度洋的海洋分析","authors":"H. Rahaman, T. Venugopal, S. Penny, D. Behringer, M. Ravichandran, J. Raju, U. Srinivasu, D. Sengupta","doi":"10.1080/1755876X.2018.1547261","DOIUrl":null,"url":null,"abstract":"ABSTRACT The National Centers for Environmental Prediction (NCEP) and the Indian National Centre for Ocean Information Services (INCOIS) produce global ocean analyses based on the Global Ocean Data Assimilation System (GODAS). This system uses a state of the art ocean general circulation model named moduler ocean model (MOM) and the 3D-Variational (3DVar) data assimilation technique. In this study we have evaluated the INCOIS-GODAS operational analysis products with an upgrade of the physical model from MOM4p0d to MOM4p1. Two experiments were performed with same atmospheric forcing fields:(i) using MOM4p0d (GODAS_p0), and (ii) using MOM4p1 (GODAS_p1). Observed temperature and salinity profiles were assimilated in both experiments. Validation with independent observations show improvement of sea surface temperature(SST), sea surface salinity (SSS) and surface currents in the new analysis GODAS_p1 as compared to the old analysis GODAS_p0.","PeriodicalId":50105,"journal":{"name":"Journal of Operational Oceanography","volume":"52 1","pages":"16 - 33"},"PeriodicalIF":1.7000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved ocean analysis for the Indian Ocean\",\"authors\":\"H. Rahaman, T. Venugopal, S. Penny, D. Behringer, M. Ravichandran, J. Raju, U. Srinivasu, D. Sengupta\",\"doi\":\"10.1080/1755876X.2018.1547261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The National Centers for Environmental Prediction (NCEP) and the Indian National Centre for Ocean Information Services (INCOIS) produce global ocean analyses based on the Global Ocean Data Assimilation System (GODAS). This system uses a state of the art ocean general circulation model named moduler ocean model (MOM) and the 3D-Variational (3DVar) data assimilation technique. In this study we have evaluated the INCOIS-GODAS operational analysis products with an upgrade of the physical model from MOM4p0d to MOM4p1. Two experiments were performed with same atmospheric forcing fields:(i) using MOM4p0d (GODAS_p0), and (ii) using MOM4p1 (GODAS_p1). Observed temperature and salinity profiles were assimilated in both experiments. Validation with independent observations show improvement of sea surface temperature(SST), sea surface salinity (SSS) and surface currents in the new analysis GODAS_p1 as compared to the old analysis GODAS_p0.\",\"PeriodicalId\":50105,\"journal\":{\"name\":\"Journal of Operational Oceanography\",\"volume\":\"52 1\",\"pages\":\"16 - 33\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/1755876X.2018.1547261\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2018.1547261","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
ABSTRACT The National Centers for Environmental Prediction (NCEP) and the Indian National Centre for Ocean Information Services (INCOIS) produce global ocean analyses based on the Global Ocean Data Assimilation System (GODAS). This system uses a state of the art ocean general circulation model named moduler ocean model (MOM) and the 3D-Variational (3DVar) data assimilation technique. In this study we have evaluated the INCOIS-GODAS operational analysis products with an upgrade of the physical model from MOM4p0d to MOM4p1. Two experiments were performed with same atmospheric forcing fields:(i) using MOM4p0d (GODAS_p0), and (ii) using MOM4p1 (GODAS_p1). Observed temperature and salinity profiles were assimilated in both experiments. Validation with independent observations show improvement of sea surface temperature(SST), sea surface salinity (SSS) and surface currents in the new analysis GODAS_p1 as compared to the old analysis GODAS_p0.
期刊介绍:
The Journal of Operational Oceanography will publish papers which examine the role of oceanography in contributing to the fields of: Numerical Weather Prediction; Development of Climatologies; Implications of Ocean Change; Ocean and Climate Forecasting; Ocean Observing Technologies; Eutrophication; Climate Assessment; Shoreline Change; Marine and Sea State Prediction; Model Development and Validation; Coastal Flooding; Reducing Public Health Risks; Short-Range Ocean Forecasting; Forces on Structures; Ocean Policy; Protecting and Restoring Ecosystem health; Controlling and Mitigating Natural Hazards; Safe and Efficient Marine Operations