考虑共振现象的入射波频率对双腔振荡水柱性能影响的实验评价

R. Shafaghat, M. Fallahi, B. Alizadeh Kharkeshi, M. Yousefifard
{"title":"考虑共振现象的入射波频率对双腔振荡水柱性能影响的实验评价","authors":"R. Shafaghat, M. Fallahi, B. Alizadeh Kharkeshi, M. Yousefifard","doi":"10.5829/ijee.2022.13.02.01","DOIUrl":null,"url":null,"abstract":"This paper has experimentally investigated the performance of a dual-chamber oscillating water columns (OWC) imposed on Caspian Sea wave’s characteristics. Experimental runs were performed for three water draft depths of 10, 15, and 20 cm and eight wave frequencies ranging from 0.4 to 0.7 Hz. Also, if the converter consists of only one chamber, the power generated was 75W; however, by placing the second chamber serial behind the first chamber, the converter power increased to 116 watts (55% improvements). The results showed that if the frequency of the incident wave is not in the natural frequency range, the converter performs is better at the lowest water draft depth (10 cm). Whereas if the frequency of the incident wave is in the natural frequency range, the converter will have the best performance at the maximum water draft depth (20 cm). As the power generated at a water draft depth of 10 cm increased by 3.8% compared to a water draft depth of 20 cm. But within the natural frequency range and by resonance, the power produced at a depth of 20 cm is 27.3% more than the power generated at a depth of 10 cm.","PeriodicalId":14542,"journal":{"name":"Iranian Journal of Energy and Environment","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental Evaluation of the Effect of Incident Wave Frequency on the Performance of a Dual-chamber Oscillating Water Columns Considering Resonance Phenomenon Occurrence\",\"authors\":\"R. Shafaghat, M. Fallahi, B. Alizadeh Kharkeshi, M. Yousefifard\",\"doi\":\"10.5829/ijee.2022.13.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper has experimentally investigated the performance of a dual-chamber oscillating water columns (OWC) imposed on Caspian Sea wave’s characteristics. Experimental runs were performed for three water draft depths of 10, 15, and 20 cm and eight wave frequencies ranging from 0.4 to 0.7 Hz. Also, if the converter consists of only one chamber, the power generated was 75W; however, by placing the second chamber serial behind the first chamber, the converter power increased to 116 watts (55% improvements). The results showed that if the frequency of the incident wave is not in the natural frequency range, the converter performs is better at the lowest water draft depth (10 cm). Whereas if the frequency of the incident wave is in the natural frequency range, the converter will have the best performance at the maximum water draft depth (20 cm). As the power generated at a water draft depth of 10 cm increased by 3.8% compared to a water draft depth of 20 cm. But within the natural frequency range and by resonance, the power produced at a depth of 20 cm is 27.3% more than the power generated at a depth of 10 cm.\",\"PeriodicalId\":14542,\"journal\":{\"name\":\"Iranian Journal of Energy and Environment\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ijee.2022.13.02.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2022.13.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Evaluation of the Effect of Incident Wave Frequency on the Performance of a Dual-chamber Oscillating Water Columns Considering Resonance Phenomenon Occurrence
This paper has experimentally investigated the performance of a dual-chamber oscillating water columns (OWC) imposed on Caspian Sea wave’s characteristics. Experimental runs were performed for three water draft depths of 10, 15, and 20 cm and eight wave frequencies ranging from 0.4 to 0.7 Hz. Also, if the converter consists of only one chamber, the power generated was 75W; however, by placing the second chamber serial behind the first chamber, the converter power increased to 116 watts (55% improvements). The results showed that if the frequency of the incident wave is not in the natural frequency range, the converter performs is better at the lowest water draft depth (10 cm). Whereas if the frequency of the incident wave is in the natural frequency range, the converter will have the best performance at the maximum water draft depth (20 cm). As the power generated at a water draft depth of 10 cm increased by 3.8% compared to a water draft depth of 20 cm. But within the natural frequency range and by resonance, the power produced at a depth of 20 cm is 27.3% more than the power generated at a depth of 10 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信