无界域上非散度型椭圆方程的混合边值问题

Asymptot. Anal. Pub Date : 2018-01-02 DOI:10.3233/ASY-181469
Dat Cao, Akif I. Ibraguimov, A. Nazarov
{"title":"无界域上非散度型椭圆方程的混合边值问题","authors":"Dat Cao, Akif I. Ibraguimov, A. Nazarov","doi":"10.3233/ASY-181469","DOIUrl":null,"url":null,"abstract":"We investigate the qualitative properties of solution to the Zaremba type problem in unbounded domain for the non-divergence elliptic equation with possible degeneration at infinity. The main result is Phragm\\'en-Lindel\\\"of type principle on growth/decay of a solution at infinity depending on both the structure of the Neumann portion of the boundary and the \"thickness\" of its Dirichlet portion. The result is formulated in terms of so-called $s$-capacity of the Dirichlet portion of the boundary, while the Neumann boundary should satisfy certain \"admissibility\" condition in the sequence of layers converging to infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"2 1","pages":"75-90"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mixed boundary value problems for non-divergence type elliptic equations in unbounded domains\",\"authors\":\"Dat Cao, Akif I. Ibraguimov, A. Nazarov\",\"doi\":\"10.3233/ASY-181469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the qualitative properties of solution to the Zaremba type problem in unbounded domain for the non-divergence elliptic equation with possible degeneration at infinity. The main result is Phragm\\\\'en-Lindel\\\\\\\"of type principle on growth/decay of a solution at infinity depending on both the structure of the Neumann portion of the boundary and the \\\"thickness\\\" of its Dirichlet portion. The result is formulated in terms of so-called $s$-capacity of the Dirichlet portion of the boundary, while the Neumann boundary should satisfy certain \\\"admissibility\\\" condition in the sequence of layers converging to infinity.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"2 1\",\"pages\":\"75-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有无穷远可能退化的非发散椭圆型方程在无界区域上Zaremba型问题解的定性性质。主要的结果是关于解在无穷远处的生长/衰减取决于边界的诺伊曼部分的结构和它的狄利克雷部分的“厚度”的类型原理。结果是用边界的Dirichlet部分的所谓的$s$-容量来表示的,而Neumann边界在收敛到无穷远的层序列中必须满足一定的“容许性”条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed boundary value problems for non-divergence type elliptic equations in unbounded domains
We investigate the qualitative properties of solution to the Zaremba type problem in unbounded domain for the non-divergence elliptic equation with possible degeneration at infinity. The main result is Phragm\'en-Lindel\"of type principle on growth/decay of a solution at infinity depending on both the structure of the Neumann portion of the boundary and the "thickness" of its Dirichlet portion. The result is formulated in terms of so-called $s$-capacity of the Dirichlet portion of the boundary, while the Neumann boundary should satisfy certain "admissibility" condition in the sequence of layers converging to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信