模的高阶导数与Hasse-Schmidt模

IF 0.8 3区 数学 Q2 MATHEMATICS
C. Chiu, L. N. Macarro
{"title":"模的高阶导数与Hasse-Schmidt模","authors":"C. Chiu, L. N. Macarro","doi":"10.1307/mmj/20205958","DOIUrl":null,"url":null,"abstract":"In this paper we revisit Ribenboim's notion of higher derivations of modules and relate it to the recent work of De Fernex and Docampo on the sheaf of differentials of the arc space. In particular, we derive their formula for the Kahler differentials of the Hasse-Schmidt algebra as a consequence of the fact that the Hasse-Schmidt algebra functors commute.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"46 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Higher Derivations of Modules and the Hasse–Schmidt Module\",\"authors\":\"C. Chiu, L. N. Macarro\",\"doi\":\"10.1307/mmj/20205958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we revisit Ribenboim's notion of higher derivations of modules and relate it to the recent work of De Fernex and Docampo on the sheaf of differentials of the arc space. In particular, we derive their formula for the Kahler differentials of the Hasse-Schmidt algebra as a consequence of the fact that the Hasse-Schmidt algebra functors commute.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205958\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205958","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们回顾了Ribenboim关于模的高阶导数的概念,并将其与De Fernex和Docampo最近关于弧空间的微分束的工作联系起来。特别地,我们推导了Hasse-Schmidt代数的Kahler微分的公式,作为Hasse-Schmidt代数函子交换的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Derivations of Modules and the Hasse–Schmidt Module
In this paper we revisit Ribenboim's notion of higher derivations of modules and relate it to the recent work of De Fernex and Docampo on the sheaf of differentials of the arc space. In particular, we derive their formula for the Kahler differentials of the Hasse-Schmidt algebra as a consequence of the fact that the Hasse-Schmidt algebra functors commute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信