用Jackson导数算子定义的多价函数的一个新子类

Shivani Indora, S. Bissu
{"title":"用Jackson导数算子定义的多价函数的一个新子类","authors":"Shivani Indora, S. Bissu","doi":"10.34257/gjsfrfvol22is5pg1","DOIUrl":null,"url":null,"abstract":"In this paper authors used Jackson Derivative operator to form a new subclass of multivalent function and derived some results for a function belonging to new subclass of multivalent functions Mainly our emphasis on coefficient estimate of functions belonging to new subclass of multivalent function as well as we have also discussed radii of starlikeness convexity and close to convexity properties of a function Our results reduces to the earlier known results of Silverman 1975 Srivastava 1987 Altintas et al 1995 and Khosravianarb et al 2017 by assuming some particular values of the parameters.","PeriodicalId":12547,"journal":{"name":"Global Journal of Science Frontier Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Subclass of Multivalent Function Defined by Using Jackson Derivative Operator\",\"authors\":\"Shivani Indora, S. Bissu\",\"doi\":\"10.34257/gjsfrfvol22is5pg1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper authors used Jackson Derivative operator to form a new subclass of multivalent function and derived some results for a function belonging to new subclass of multivalent functions Mainly our emphasis on coefficient estimate of functions belonging to new subclass of multivalent function as well as we have also discussed radii of starlikeness convexity and close to convexity properties of a function Our results reduces to the earlier known results of Silverman 1975 Srivastava 1987 Altintas et al 1995 and Khosravianarb et al 2017 by assuming some particular values of the parameters.\",\"PeriodicalId\":12547,\"journal\":{\"name\":\"Global Journal of Science Frontier Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Science Frontier Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/gjsfrfvol22is5pg1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjsfrfvol22is5pg1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Jackson导数算子形成了多价函数的一个新子类,并得到了属于多价函数新子类的函数的一些结果。我们主要讨论了属于多价函数新子类的函数的系数估计,并讨论了函数的星形凸半径和接近凸性质。我们的结果可以归结为Silverman 1975 (Srivastava 1987)的已知结果Altintas et al . 1995和Khosravianarb et al . 2017通过假设一些特定的参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Subclass of Multivalent Function Defined by Using Jackson Derivative Operator
In this paper authors used Jackson Derivative operator to form a new subclass of multivalent function and derived some results for a function belonging to new subclass of multivalent functions Mainly our emphasis on coefficient estimate of functions belonging to new subclass of multivalent function as well as we have also discussed radii of starlikeness convexity and close to convexity properties of a function Our results reduces to the earlier known results of Silverman 1975 Srivastava 1987 Altintas et al 1995 and Khosravianarb et al 2017 by assuming some particular values of the parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信