高能电子束通过时薄膜加热的模拟和初步实验结果

IF 0.5 Q4 PHYSICS, NUCLEAR
M. Luhanko, O. Shopen, S. Karpus, T. Malykhina
{"title":"高能电子束通过时薄膜加热的模拟和初步实验结果","authors":"M. Luhanko, O. Shopen, S. Karpus, T. Malykhina","doi":"10.46813/2023-145-139","DOIUrl":null,"url":null,"abstract":"The preliminary experimental results as well as modeling the heating of thin-foil materials during the passage of high-energy electrons with energy of 15 MeV are presented. Foils of 50 μm titanium, 50 μm aluminum and 125 μm Kapton® were chosen as the test targets. A calculation technique has been developed, which consists of automating the finite difference method applying Python programming language tools. These tools allowed solving the problem of heat distribution in the thin foil, taking into account the ionization losses of the primary electron beam and the black body radiation. The data on the surface temperature distribution of the research samples were obtained. The time for establishing thermal equilibrium was determined taking into account the distribution of the electron beam current density. It is shown that optimization of the main parameters of the high-energy electron beam beam (for example the current density) makes it possible to neglect the thermal loads on these films, which was confirmed during bench tests at 30 MeV electron accelerator of the IHEPNP NSC KIPT.","PeriodicalId":54580,"journal":{"name":"Problems of Atomic Science and Technology","volume":"55 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING AND PRELIMINARY EXPERIMENTAL RESULTS OF THIN FILM HEATING DURING THE PASSAGE OF A HIGH-ENERGY ELECTRON BEAM\",\"authors\":\"M. Luhanko, O. Shopen, S. Karpus, T. Malykhina\",\"doi\":\"10.46813/2023-145-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preliminary experimental results as well as modeling the heating of thin-foil materials during the passage of high-energy electrons with energy of 15 MeV are presented. Foils of 50 μm titanium, 50 μm aluminum and 125 μm Kapton® were chosen as the test targets. A calculation technique has been developed, which consists of automating the finite difference method applying Python programming language tools. These tools allowed solving the problem of heat distribution in the thin foil, taking into account the ionization losses of the primary electron beam and the black body radiation. The data on the surface temperature distribution of the research samples were obtained. The time for establishing thermal equilibrium was determined taking into account the distribution of the electron beam current density. It is shown that optimization of the main parameters of the high-energy electron beam beam (for example the current density) makes it possible to neglect the thermal loads on these films, which was confirmed during bench tests at 30 MeV electron accelerator of the IHEPNP NSC KIPT.\",\"PeriodicalId\":54580,\"journal\":{\"name\":\"Problems of Atomic Science and Technology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of Atomic Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46813/2023-145-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Atomic Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46813/2023-145-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了初步的实验结果,并对能量为15mev的高能电子通过薄膜材料时的加热过程进行了模拟。选择50 μm钛箔、50 μm铝箔和125 μm Kapton®箔作为测试目标。本文提出了一种利用Python编程语言实现有限差分法自动化的计算方法。这些工具可以解决薄箔中的热分布问题,同时考虑到主电子束和黑体辐射的电离损失。得到了研究样品的表面温度分布数据。考虑了电子束电流密度的分布,确定了建立热平衡的时间。结果表明,优化高能电子束的主要参数(如电流密度)可以忽略薄膜上的热载荷,这在IHEPNP NSC - KIPT的30 MeV电子加速器台架试验中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODELING AND PRELIMINARY EXPERIMENTAL RESULTS OF THIN FILM HEATING DURING THE PASSAGE OF A HIGH-ENERGY ELECTRON BEAM
The preliminary experimental results as well as modeling the heating of thin-foil materials during the passage of high-energy electrons with energy of 15 MeV are presented. Foils of 50 μm titanium, 50 μm aluminum and 125 μm Kapton® were chosen as the test targets. A calculation technique has been developed, which consists of automating the finite difference method applying Python programming language tools. These tools allowed solving the problem of heat distribution in the thin foil, taking into account the ionization losses of the primary electron beam and the black body radiation. The data on the surface temperature distribution of the research samples were obtained. The time for establishing thermal equilibrium was determined taking into account the distribution of the electron beam current density. It is shown that optimization of the main parameters of the high-energy electron beam beam (for example the current density) makes it possible to neglect the thermal loads on these films, which was confirmed during bench tests at 30 MeV electron accelerator of the IHEPNP NSC KIPT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
50.00%
发文量
0
审稿时长
2-4 weeks
期刊介绍: The journal covers the following topics: Physics of Radiation Effects and Radiation Materials Science; Nuclear Physics Investigations; Plasma Physics; Vacuum, Pure Materials and Superconductors; Plasma Electronics and New Methods of Acceleration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信