具有恒定延迟界的软实时最优半集群调度程序

IF 0.5 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shareef Ahmed, James H. Anderson
{"title":"具有恒定延迟界的软实时最优半集群调度程序","authors":"Shareef Ahmed, James H. Anderson","doi":"10.1109/RTCSA50079.2020.9203605","DOIUrl":null,"url":null,"abstract":"Different global and semi-partitioned schedulers have been proposed that are soft-real-time (SRT) optimal for sporadic task systems, meaning they can guarantee bounded deadline tardiness. However, under known analyses, tardiness bounds increase with respect to the number of processors, which reduces the applicability of these schedulers in systems with a large number of processors. In this paper, a semi-clustered scheduler, SC-EDF, is presented that has a constant tardiness bound. SC-EDF partitions tasks into clusters, each of which may include one fractional processor. Each cluster is scheduled by G-EDF, and the fractional processors are realized using Pfair scheduling techniques.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"21 1","pages":"1-10"},"PeriodicalIF":0.5000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Soft-Real-Time-Optimal Semi-Clustered Scheduler with a Constant Tardiness Bound\",\"authors\":\"Shareef Ahmed, James H. Anderson\",\"doi\":\"10.1109/RTCSA50079.2020.9203605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different global and semi-partitioned schedulers have been proposed that are soft-real-time (SRT) optimal for sporadic task systems, meaning they can guarantee bounded deadline tardiness. However, under known analyses, tardiness bounds increase with respect to the number of processors, which reduces the applicability of these schedulers in systems with a large number of processors. In this paper, a semi-clustered scheduler, SC-EDF, is presented that has a constant tardiness bound. SC-EDF partitions tasks into clusters, each of which may include one fractional processor. Each cluster is scheduled by G-EDF, and the fractional processors are realized using Pfair scheduling techniques.\",\"PeriodicalId\":38446,\"journal\":{\"name\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"volume\":\"21 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTCSA50079.2020.9203605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA50079.2020.9203605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

不同的全局调度器和半分区调度器已经被提出,它们对于零星任务系统是软实时(SRT)最优的,这意味着它们可以保证有限的截止日期延迟。然而,根据已知的分析,延迟界限随着处理器数量的增加而增加,这降低了这些调度器在具有大量处理器的系统中的适用性。本文提出了一种具有恒定延迟界的半集群调度程序SC-EDF。SC-EDF将任务划分到集群中,每个集群可能包括一个分数处理器。每个集群采用G-EDF调度,分式处理器采用Pfair调度技术实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Soft-Real-Time-Optimal Semi-Clustered Scheduler with a Constant Tardiness Bound
Different global and semi-partitioned schedulers have been proposed that are soft-real-time (SRT) optimal for sporadic task systems, meaning they can guarantee bounded deadline tardiness. However, under known analyses, tardiness bounds increase with respect to the number of processors, which reduces the applicability of these schedulers in systems with a large number of processors. In this paper, a semi-clustered scheduler, SC-EDF, is presented that has a constant tardiness bound. SC-EDF partitions tasks into clusters, each of which may include one fractional processor. Each cluster is scheduled by G-EDF, and the fractional processors are realized using Pfair scheduling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
14.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信