B. Sirois, L. Fournier, J. Leduc, W. Witczak-Krempa
{"title":"整数量子霍尔态中的几何纠缠","authors":"B. Sirois, L. Fournier, J. Leduc, W. Witczak-Krempa","doi":"10.1103/PHYSREVB.103.115115","DOIUrl":null,"url":null,"abstract":"We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various ground and excited states, with or without mass anisotropy. We focus on an important class of regions that contain sharp corners or cusps, leading to a geometric angle-dependent contribution to the EE. We unravel surprising relations by comparing this corner term at different fillings. We further find that the corner term, when properly normalized, has nearly the same angle dependence as numerous conformal field theories (CFTs) in two spatial dimensions, which hints at a broader structure. In fact, the Hall corner term is found to obey bounds that were previously obtained for CFTs. In addition, the low-lying entanglement spectrum and the corresponding eigenfunctions reveal \"excitations\" localized near corners. Finally, we present an outlook for fractional quantum Hall states.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Geometric entanglement in integer quantum Hall states\",\"authors\":\"B. Sirois, L. Fournier, J. Leduc, W. Witczak-Krempa\",\"doi\":\"10.1103/PHYSREVB.103.115115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various ground and excited states, with or without mass anisotropy. We focus on an important class of regions that contain sharp corners or cusps, leading to a geometric angle-dependent contribution to the EE. We unravel surprising relations by comparing this corner term at different fillings. We further find that the corner term, when properly normalized, has nearly the same angle dependence as numerous conformal field theories (CFTs) in two spatial dimensions, which hints at a broader structure. In fact, the Hall corner term is found to obey bounds that were previously obtained for CFTs. In addition, the low-lying entanglement spectrum and the corresponding eigenfunctions reveal \\\"excitations\\\" localized near corners. Finally, we present an outlook for fractional quantum Hall states.\",\"PeriodicalId\":9375,\"journal\":{\"name\":\"Bulletin of the American Physical Society\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Physical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.115115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.115115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric entanglement in integer quantum Hall states
We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various ground and excited states, with or without mass anisotropy. We focus on an important class of regions that contain sharp corners or cusps, leading to a geometric angle-dependent contribution to the EE. We unravel surprising relations by comparing this corner term at different fillings. We further find that the corner term, when properly normalized, has nearly the same angle dependence as numerous conformal field theories (CFTs) in two spatial dimensions, which hints at a broader structure. In fact, the Hall corner term is found to obey bounds that were previously obtained for CFTs. In addition, the low-lying entanglement spectrum and the corresponding eigenfunctions reveal "excitations" localized near corners. Finally, we present an outlook for fractional quantum Hall states.