巴格曼集合中的伪微分学

IF 0.9 4区 数学 Q2 Mathematics
N. Teofanov, J. Toft
{"title":"巴格曼集合中的伪微分学","authors":"N. Teofanov, J. Toft","doi":"10.5186/aasfm.2020.4512","DOIUrl":null,"url":null,"abstract":"We give a fundament for Berezin's analytic $\\Psi$do considered in \\cite{Berezin71} in terms of Bargmann images of Pilipovi{\\'c} spaces. We deduce basic continuity results for such $\\Psi$do, especially when the operator kernels are in suitable mixed weighted Lebesgue spaces and act on certain weighted Lebesgue spaces of entire functions. In particular, we show how these results imply well-known continuity results for real $\\Psi$do with symbols in modulation spaces, when acting on other modulation spaces.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Pseudo-differential calculus in a Bargmann setting\",\"authors\":\"N. Teofanov, J. Toft\",\"doi\":\"10.5186/aasfm.2020.4512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a fundament for Berezin's analytic $\\\\Psi$do considered in \\\\cite{Berezin71} in terms of Bargmann images of Pilipovi{\\\\'c} spaces. We deduce basic continuity results for such $\\\\Psi$do, especially when the operator kernels are in suitable mixed weighted Lebesgue spaces and act on certain weighted Lebesgue spaces of entire functions. In particular, we show how these results imply well-known continuity results for real $\\\\Psi$do with symbols in modulation spaces, when acting on other modulation spaces.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4512\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4512","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

我们给出了关于pilipoviki空间的Bargmann象的Berezin解析$\Psi$ (\cite{Berezin71})的基础。我们推导了这类{}$\Psi$函数的基本连续性结果,特别是当算子核在合适的混合加权Lebesgue空间中并作用于整个函数的某些加权Lebesgue空间时。特别地,我们展示了当作用于其他调制空间时,这些结果如何暗示了真实$\Psi$的众所周知的连续性结果如何处理调制空间中的符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-differential calculus in a Bargmann setting
We give a fundament for Berezin's analytic $\Psi$do considered in \cite{Berezin71} in terms of Bargmann images of Pilipovi{\'c} spaces. We deduce basic continuity results for such $\Psi$do, especially when the operator kernels are in suitable mixed weighted Lebesgue spaces and act on certain weighted Lebesgue spaces of entire functions. In particular, we show how these results imply well-known continuity results for real $\Psi$do with symbols in modulation spaces, when acting on other modulation spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信