一种深度神经网络硬件逼近的设计框架

Wei-Hung Lin, Hsu-Yu Kao, Shih-Hsu Huang
{"title":"一种深度神经网络硬件逼近的设计框架","authors":"Wei-Hung Lin, Hsu-Yu Kao, Shih-Hsu Huang","doi":"10.1109/ISPACS48206.2019.8986370","DOIUrl":null,"url":null,"abstract":"For real-time edge AI applications, there is a need to implement deep neural networks (DNNs) in hardware for high speed. The trade-off between computing accuracy and hardware cost must be made during the implementation of hardware approximation. In this paper, we propose a design framework for DNN hardware approximation. The proposed framework provides a behavior model library of approximate logic circuits (e.g., approximate multipliers) for the designers to utilize them. Moreover, the proposed framework also supports the dynamic fixed-point arithmetic for hardware simulation. To save the required total bit width, we develop an integer length tuning method in the framework to maximize the computing accuracy under a constraint on the total bit width. Experimental results on ICNet show that the proposed framework can achieve high computing accuracy with small hardware cost.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"48 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Design Framework for Hardware Approximation of Deep Neural Networks\",\"authors\":\"Wei-Hung Lin, Hsu-Yu Kao, Shih-Hsu Huang\",\"doi\":\"10.1109/ISPACS48206.2019.8986370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For real-time edge AI applications, there is a need to implement deep neural networks (DNNs) in hardware for high speed. The trade-off between computing accuracy and hardware cost must be made during the implementation of hardware approximation. In this paper, we propose a design framework for DNN hardware approximation. The proposed framework provides a behavior model library of approximate logic circuits (e.g., approximate multipliers) for the designers to utilize them. Moreover, the proposed framework also supports the dynamic fixed-point arithmetic for hardware simulation. To save the required total bit width, we develop an integer length tuning method in the framework to maximize the computing accuracy under a constraint on the total bit width. Experimental results on ICNet show that the proposed framework can achieve high computing accuracy with small hardware cost.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"48 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于实时边缘人工智能应用,需要在硬件中实现高速的深度神经网络(dnn)。在实现硬件逼近时,必须权衡计算精度和硬件成本。本文提出了一种深度神经网络硬件近似的设计框架。提出的框架提供了一个近似逻辑电路(例如,近似乘法器)的行为模型库,供设计人员使用。此外,该框架还支持硬件仿真的动态不动点算法。为了节省所需的总位宽,我们在框架中开发了一种整数长度调优方法,以在总位宽约束下最大化计算精度。在ICNet上的实验结果表明,该框架能够以较小的硬件成本实现较高的计算精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Design Framework for Hardware Approximation of Deep Neural Networks
For real-time edge AI applications, there is a need to implement deep neural networks (DNNs) in hardware for high speed. The trade-off between computing accuracy and hardware cost must be made during the implementation of hardware approximation. In this paper, we propose a design framework for DNN hardware approximation. The proposed framework provides a behavior model library of approximate logic circuits (e.g., approximate multipliers) for the designers to utilize them. Moreover, the proposed framework also supports the dynamic fixed-point arithmetic for hardware simulation. To save the required total bit width, we develop an integer length tuning method in the framework to maximize the computing accuracy under a constraint on the total bit width. Experimental results on ICNet show that the proposed framework can achieve high computing accuracy with small hardware cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信