自动转录的全音阶口琴录音

Filipe M. Lins, M. Johann, Emmanouil Benetos, Rodrigo Schramm
{"title":"自动转录的全音阶口琴录音","authors":"Filipe M. Lins, M. Johann, Emmanouil Benetos, Rodrigo Schramm","doi":"10.1109/ICASSP.2019.8682334","DOIUrl":null,"url":null,"abstract":"This paper presents a method for automatic transcription of the diatonic Harmonica instrument. It estimates the multi-pitch activations through a spectrogram factorisation framework. This framework is based on Probabilistic Latent Component Analysis (PLCA) and uses a fixed 4-dimensional dictionary with spectral templates extracted from Harmonica’s instrument timbre. Methods based on spectrogram factorisation may suffer from local-optima issues in the presence of harmonic overlap or considerable timbre variability. To alleviate this issue, we propose a set of harmonic constraints that are inherent to the Harmonica instrument note layout or are caused by specific diatonic Harmonica playing techniques. These constraints help to guide the factorisation process until convergence into meaningful multi-pitch activations is achieved. This work also builds a new audio dataset containing solo recordings of diatonic Harmonica excerpts and the respective multi-pitch annotations. We compare our proposed approach against multiple baseline techniques for automatic music transcription on this dataset and report the results based on frame-based F-measure statistics.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"29 1","pages":"256-260"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Transcription of Diatonic Harmonica Recordings\",\"authors\":\"Filipe M. Lins, M. Johann, Emmanouil Benetos, Rodrigo Schramm\",\"doi\":\"10.1109/ICASSP.2019.8682334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for automatic transcription of the diatonic Harmonica instrument. It estimates the multi-pitch activations through a spectrogram factorisation framework. This framework is based on Probabilistic Latent Component Analysis (PLCA) and uses a fixed 4-dimensional dictionary with spectral templates extracted from Harmonica’s instrument timbre. Methods based on spectrogram factorisation may suffer from local-optima issues in the presence of harmonic overlap or considerable timbre variability. To alleviate this issue, we propose a set of harmonic constraints that are inherent to the Harmonica instrument note layout or are caused by specific diatonic Harmonica playing techniques. These constraints help to guide the factorisation process until convergence into meaningful multi-pitch activations is achieved. This work also builds a new audio dataset containing solo recordings of diatonic Harmonica excerpts and the respective multi-pitch annotations. We compare our proposed approach against multiple baseline techniques for automatic music transcription on this dataset and report the results based on frame-based F-measure statistics.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"29 1\",\"pages\":\"256-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种自动抄写全音阶口琴的方法。它通过谱图分解框架估计多音高激活。该框架基于概率潜在成分分析(PLCA),并使用固定的四维字典,其中包含从口琴乐器音色中提取的频谱模板。在存在谐波重叠或相当大的音色变化时,基于谱图分解的方法可能存在局部最优问题。为了缓解这个问题,我们提出了一套谐波约束,这些约束是口琴乐器音符布局固有的或由特定的全音阶口琴演奏技术引起的。这些约束有助于指导分解过程,直到收敛到有意义的多音高激活。这项工作还建立了一个新的音频数据集,其中包含全音阶口琴摘录的独奏录音和相应的多音高注释。我们将我们提出的方法与该数据集上用于自动音乐转录的多种基线技术进行比较,并基于基于帧的f测量统计报告结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Transcription of Diatonic Harmonica Recordings
This paper presents a method for automatic transcription of the diatonic Harmonica instrument. It estimates the multi-pitch activations through a spectrogram factorisation framework. This framework is based on Probabilistic Latent Component Analysis (PLCA) and uses a fixed 4-dimensional dictionary with spectral templates extracted from Harmonica’s instrument timbre. Methods based on spectrogram factorisation may suffer from local-optima issues in the presence of harmonic overlap or considerable timbre variability. To alleviate this issue, we propose a set of harmonic constraints that are inherent to the Harmonica instrument note layout or are caused by specific diatonic Harmonica playing techniques. These constraints help to guide the factorisation process until convergence into meaningful multi-pitch activations is achieved. This work also builds a new audio dataset containing solo recordings of diatonic Harmonica excerpts and the respective multi-pitch annotations. We compare our proposed approach against multiple baseline techniques for automatic music transcription on this dataset and report the results based on frame-based F-measure statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信