{"title":"基于边际加性亚分布风险模型的聚类生存数据竞争风险回归","authors":"Xinyuan Chen, D. Esserman, Fan Li","doi":"10.1111/stan.12317","DOIUrl":null,"url":null,"abstract":"A population‐averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population‐averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness‐of‐fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"58 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Competing risks regression for clustered survival data via the marginal additive subdistribution hazards model\",\"authors\":\"Xinyuan Chen, D. Esserman, Fan Li\",\"doi\":\"10.1111/stan.12317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A population‐averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population‐averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness‐of‐fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12317\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12317","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Competing risks regression for clustered survival data via the marginal additive subdistribution hazards model
A population‐averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population‐averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness‐of‐fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.This article is protected by copyright. All rights reserved.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.