混沌范德波尔振荡器控制算法比较

Lauren Ribordy, Timothy Sands
{"title":"混沌范德波尔振荡器控制算法比较","authors":"Lauren Ribordy, Timothy Sands","doi":"10.3390/dynamics3010012","DOIUrl":null,"url":null,"abstract":"The damped van der Pol oscillator is a chaotic non-linear system. Small perturbations in initial conditions may result in wildly different trajectories. Controlling, or forcing, the behavior of a van der Pol oscillator is difficult to achieve through traditional adaptive control methods. Connecting two van der Pol oscillators together where the output of one oscillator, the driver, drives the behavior of its partner, the responder, is a proven technique for controlling the van der Pol oscillator. Deterministic artificial intelligence is a feedforward and feedback control method that leverages the known physics of the van der Pol system to learn optimal system parameters for the forcing function. We assessed the performance of deterministic artificial intelligence employing three different online parameter estimation algorithms. Our evaluation criteria include mean absolute error between the target trajectory and the response oscillator trajectory over time. Two algorithms performed better than the benchmark with necessary discussion of the conditions under which they perform best. Recursive least squares with exponential forgetting had the lowest mean absolute error overall, with a 2.46% reduction in error compared to the baseline, feedforward without deterministic artificial intelligence. While least mean squares with normalized gradient adaptation had worse initial error in the first 10% of the simulation, after that point it exhibited consistently lower error. Over the last 90% of the simulation, deterministic artificial intelligence with least mean squares with normalized gradient adaptation achieved a 48.7% reduction in mean absolute error compared to baseline.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic van der Pol Oscillator Control Algorithm Comparison\",\"authors\":\"Lauren Ribordy, Timothy Sands\",\"doi\":\"10.3390/dynamics3010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The damped van der Pol oscillator is a chaotic non-linear system. Small perturbations in initial conditions may result in wildly different trajectories. Controlling, or forcing, the behavior of a van der Pol oscillator is difficult to achieve through traditional adaptive control methods. Connecting two van der Pol oscillators together where the output of one oscillator, the driver, drives the behavior of its partner, the responder, is a proven technique for controlling the van der Pol oscillator. Deterministic artificial intelligence is a feedforward and feedback control method that leverages the known physics of the van der Pol system to learn optimal system parameters for the forcing function. We assessed the performance of deterministic artificial intelligence employing three different online parameter estimation algorithms. Our evaluation criteria include mean absolute error between the target trajectory and the response oscillator trajectory over time. Two algorithms performed better than the benchmark with necessary discussion of the conditions under which they perform best. Recursive least squares with exponential forgetting had the lowest mean absolute error overall, with a 2.46% reduction in error compared to the baseline, feedforward without deterministic artificial intelligence. While least mean squares with normalized gradient adaptation had worse initial error in the first 10% of the simulation, after that point it exhibited consistently lower error. Over the last 90% of the simulation, deterministic artificial intelligence with least mean squares with normalized gradient adaptation achieved a 48.7% reduction in mean absolute error compared to baseline.\",\"PeriodicalId\":80276,\"journal\":{\"name\":\"Dynamics (Pembroke, Ont.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics (Pembroke, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics3010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics3010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阻尼范德波尔振荡器是一个混沌非线性系统。初始条件下的微小扰动可能导致轨迹的大不相同。通过传统的自适应控制方法很难控制或强制范德波尔振荡器的行为。将两个范德波尔振荡器连接在一起,其中一个振荡器(驱动器)的输出驱动其伙伴(响应器)的行为,是一种经过验证的控制范德波尔振荡器的技术。确定性人工智能是一种前馈和反馈控制方法,它利用已知的范德波尔系统物理特性来学习强制函数的最优系统参数。我们使用三种不同的在线参数估计算法评估确定性人工智能的性能。我们的评估标准包括目标轨迹和响应振荡器轨迹之间随时间的平均绝对误差。有两种算法在必要的条件下表现得比基准更好。具有指数遗忘的递归最小二乘总体上具有最低的平均绝对误差,与没有确定性人工智能的前馈相比,误差减少了2.46%。虽然归一化梯度自适应的最小均方差在模拟的前10%具有较差的初始误差,但在此之后,其误差始终较低。在最后90%的模拟中,具有最小均方差和归一化梯度适应的确定性人工智能与基线相比,平均绝对误差降低了48.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic van der Pol Oscillator Control Algorithm Comparison
The damped van der Pol oscillator is a chaotic non-linear system. Small perturbations in initial conditions may result in wildly different trajectories. Controlling, or forcing, the behavior of a van der Pol oscillator is difficult to achieve through traditional adaptive control methods. Connecting two van der Pol oscillators together where the output of one oscillator, the driver, drives the behavior of its partner, the responder, is a proven technique for controlling the van der Pol oscillator. Deterministic artificial intelligence is a feedforward and feedback control method that leverages the known physics of the van der Pol system to learn optimal system parameters for the forcing function. We assessed the performance of deterministic artificial intelligence employing three different online parameter estimation algorithms. Our evaluation criteria include mean absolute error between the target trajectory and the response oscillator trajectory over time. Two algorithms performed better than the benchmark with necessary discussion of the conditions under which they perform best. Recursive least squares with exponential forgetting had the lowest mean absolute error overall, with a 2.46% reduction in error compared to the baseline, feedforward without deterministic artificial intelligence. While least mean squares with normalized gradient adaptation had worse initial error in the first 10% of the simulation, after that point it exhibited consistently lower error. Over the last 90% of the simulation, deterministic artificial intelligence with least mean squares with normalized gradient adaptation achieved a 48.7% reduction in mean absolute error compared to baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信