线性函数的组合及其在散列中的应用

IF 0.1 Q4 MATHEMATICS
V. Shpilrain, Bianca Sosnovski
{"title":"线性函数的组合及其在散列中的应用","authors":"V. Shpilrain, Bianca Sosnovski","doi":"10.1515/gcc-2016-0016","DOIUrl":null,"url":null,"abstract":"Abstract Cayley hash functions are based on a simple idea of using a pair of (semi)group elements, A and B, to hash the 0 and 1 bit, respectively, and then to hash an arbitrary bit string in the natural way, by using multiplication of elements in the (semi)group. In this paper, we focus on hashing with linear functions of one variable over 𝔽 p ${\\mathbb{F}_{p}}$ . The corresponding hash functions are very efficient. In particular, we show that hashing a bit string of length n with our method requires, in general, at most 2 ⁢ n ${2n}$ multiplications in 𝔽 p ${\\mathbb{F}_{p}}$ , but with particular pairs of linear functions that we suggest, one does not need to perform any multiplications at all. We also give explicit lower bounds on the length of collisions for hash functions corresponding to these particular pairs of linear functions over 𝔽 p ${\\mathbb{F}_{p}}$ .","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"20 1","pages":"155 - 161"},"PeriodicalIF":0.1000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Compositions of linear functions and applications to hashing\",\"authors\":\"V. Shpilrain, Bianca Sosnovski\",\"doi\":\"10.1515/gcc-2016-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cayley hash functions are based on a simple idea of using a pair of (semi)group elements, A and B, to hash the 0 and 1 bit, respectively, and then to hash an arbitrary bit string in the natural way, by using multiplication of elements in the (semi)group. In this paper, we focus on hashing with linear functions of one variable over 𝔽 p ${\\\\mathbb{F}_{p}}$ . The corresponding hash functions are very efficient. In particular, we show that hashing a bit string of length n with our method requires, in general, at most 2 ⁢ n ${2n}$ multiplications in 𝔽 p ${\\\\mathbb{F}_{p}}$ , but with particular pairs of linear functions that we suggest, one does not need to perform any multiplications at all. We also give explicit lower bounds on the length of collisions for hash functions corresponding to these particular pairs of linear functions over 𝔽 p ${\\\\mathbb{F}_{p}}$ .\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"20 1\",\"pages\":\"155 - 161\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2016-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

Cayley哈希函数基于一个简单的思想,即使用一对(半)群元素a和B分别对0和1位进行哈希,然后使用(半)群中元素的乘法以自然的方式对任意位串进行哈希。在本文中,我们主要讨论了一类一元线性函数的哈希问题。相应的哈希函数非常高效。特别地,我们证明了用我们的方法哈希一个长度为n的位串,一般情况下,需要在 p ${\mathbb{F}_{p}}$中最多2个n ${2n}$乘法,但是对于我们建议的特定线性函数对,根本不需要执行任何乘法。我们也给出了这些特定的线性函数对对应的哈希函数的碰撞长度的显式下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositions of linear functions and applications to hashing
Abstract Cayley hash functions are based on a simple idea of using a pair of (semi)group elements, A and B, to hash the 0 and 1 bit, respectively, and then to hash an arbitrary bit string in the natural way, by using multiplication of elements in the (semi)group. In this paper, we focus on hashing with linear functions of one variable over 𝔽 p ${\mathbb{F}_{p}}$ . The corresponding hash functions are very efficient. In particular, we show that hashing a bit string of length n with our method requires, in general, at most 2 ⁢ n ${2n}$ multiplications in 𝔽 p ${\mathbb{F}_{p}}$ , but with particular pairs of linear functions that we suggest, one does not need to perform any multiplications at all. We also give explicit lower bounds on the length of collisions for hash functions corresponding to these particular pairs of linear functions over 𝔽 p ${\mathbb{F}_{p}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信