{"title":"具有凸积分质量指标的奇摄动最优控制问题解的渐近展开式,该问题的终端部分加性地依赖于慢变量和快变量","authors":"A. R. Danilin, A. A. Shaburov","doi":"10.35634/2226-3594-2020-55-03","DOIUrl":null,"url":null,"abstract":"The paper deals with the problem of optimal control with a Boltz-type quality index over a finite time interval for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In particular, we study the problem of controlling the motion of a system of small mass points under the action of a bounded force. The terminal part of the convex integral quality index additively depends on slow and fast variables, and the integral term is a strictly convex function of control variable. If the system is completely controllable, then the Pontryagin maximum principle is a necessary and sufficient condition for optimality. The main difference between this study and previous works is that the equation contains the zero matrix of fast variables and, thus, the results of A.B. Vasilieva on the asymptotic of the fundamental matrix of a control system are not valid. However, the linear steady-state system satisfies the condition of complete controllability. The article shows that problems of optimal control with a convex integral quality index are more regular than time-optimal problems.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"31 5 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables\",\"authors\":\"A. R. Danilin, A. A. Shaburov\",\"doi\":\"10.35634/2226-3594-2020-55-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the problem of optimal control with a Boltz-type quality index over a finite time interval for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In particular, we study the problem of controlling the motion of a system of small mass points under the action of a bounded force. The terminal part of the convex integral quality index additively depends on slow and fast variables, and the integral term is a strictly convex function of control variable. If the system is completely controllable, then the Pontryagin maximum principle is a necessary and sufficient condition for optimality. The main difference between this study and previous works is that the equation contains the zero matrix of fast variables and, thus, the results of A.B. Vasilieva on the asymptotic of the fundamental matrix of a control system are not valid. However, the linear steady-state system satisfies the condition of complete controllability. The article shows that problems of optimal control with a convex integral quality index are more regular than time-optimal problems.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":\"31 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/2226-3594-2020-55-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2020-55-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables
The paper deals with the problem of optimal control with a Boltz-type quality index over a finite time interval for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In particular, we study the problem of controlling the motion of a system of small mass points under the action of a bounded force. The terminal part of the convex integral quality index additively depends on slow and fast variables, and the integral term is a strictly convex function of control variable. If the system is completely controllable, then the Pontryagin maximum principle is a necessary and sufficient condition for optimality. The main difference between this study and previous works is that the equation contains the zero matrix of fast variables and, thus, the results of A.B. Vasilieva on the asymptotic of the fundamental matrix of a control system are not valid. However, the linear steady-state system satisfies the condition of complete controllability. The article shows that problems of optimal control with a convex integral quality index are more regular than time-optimal problems.