{"title":"利用二氧化钛纳米催化剂从木棉、麻花和印楝中可持续生产生物柴油","authors":"P. Sujin, P. M. Díaz, Ajith J. Kings, L. Miriam","doi":"10.1177/0958305X221115090","DOIUrl":null,"url":null,"abstract":"Rapid industrialization and population expansion increased the demand for petroleum-based fuels, resulting in price hike and creates serious environmental issues. Biodiesel, a clean, renewable and long-lasting alternative and for large scale production needs readily available and sustainable feedstocks. Edible and non-edible plants are abundant in Southern India, particularly Ceiba penandra (CP), Mahua longifolia (ML), and Azadirachta indica (AI), which were employed in this study in combination. An efficient heterogeneous nano-catalyst CaO-TiO2 was synthesized and employed in the transesterification process due to its recoverability and insensitivity to FFA. The catalyst was subjected to characterize by FTIR, XRD and SEM with EDX mapping. Response surface approach is engaged in this study for cost-effective production. More than 95% biodiesel yield was achieved for Ceiba penandra oil (CPO), Mahua longifolia oil (MLO), Azadirachta indica oil (AIO) and their mixture (MIO) by optimization of significant reaction parameters and the best combination was obtained as methanol oil ratio (0.32, 0.46, 0.34 and 0.42 v/v), catalyst usage (5, 6.5, 6 and 4 wt.%), mixing intensity (750, 840, 700 and 540 rpm) and duration (80, 105, 85 and 85 min) respectively with constant temperature of 70°C. Fatty acid profile was characterized by chromatograph also established the properties by ASTM and EN guidelines to confirm its compatibility in the IC engine.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"1 1","pages":"640 - 662"},"PeriodicalIF":4.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sustainable biodiesel production from Ceiba penandra, Mahua longifolia, and Azadirachta indica using CaO-TiO2 nano catalyst\",\"authors\":\"P. Sujin, P. M. Díaz, Ajith J. Kings, L. Miriam\",\"doi\":\"10.1177/0958305X221115090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid industrialization and population expansion increased the demand for petroleum-based fuels, resulting in price hike and creates serious environmental issues. Biodiesel, a clean, renewable and long-lasting alternative and for large scale production needs readily available and sustainable feedstocks. Edible and non-edible plants are abundant in Southern India, particularly Ceiba penandra (CP), Mahua longifolia (ML), and Azadirachta indica (AI), which were employed in this study in combination. An efficient heterogeneous nano-catalyst CaO-TiO2 was synthesized and employed in the transesterification process due to its recoverability and insensitivity to FFA. The catalyst was subjected to characterize by FTIR, XRD and SEM with EDX mapping. Response surface approach is engaged in this study for cost-effective production. More than 95% biodiesel yield was achieved for Ceiba penandra oil (CPO), Mahua longifolia oil (MLO), Azadirachta indica oil (AIO) and their mixture (MIO) by optimization of significant reaction parameters and the best combination was obtained as methanol oil ratio (0.32, 0.46, 0.34 and 0.42 v/v), catalyst usage (5, 6.5, 6 and 4 wt.%), mixing intensity (750, 840, 700 and 540 rpm) and duration (80, 105, 85 and 85 min) respectively with constant temperature of 70°C. Fatty acid profile was characterized by chromatograph also established the properties by ASTM and EN guidelines to confirm its compatibility in the IC engine.\",\"PeriodicalId\":11652,\"journal\":{\"name\":\"Energy & Environment\",\"volume\":\"1 1\",\"pages\":\"640 - 662\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0958305X221115090\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221115090","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Sustainable biodiesel production from Ceiba penandra, Mahua longifolia, and Azadirachta indica using CaO-TiO2 nano catalyst
Rapid industrialization and population expansion increased the demand for petroleum-based fuels, resulting in price hike and creates serious environmental issues. Biodiesel, a clean, renewable and long-lasting alternative and for large scale production needs readily available and sustainable feedstocks. Edible and non-edible plants are abundant in Southern India, particularly Ceiba penandra (CP), Mahua longifolia (ML), and Azadirachta indica (AI), which were employed in this study in combination. An efficient heterogeneous nano-catalyst CaO-TiO2 was synthesized and employed in the transesterification process due to its recoverability and insensitivity to FFA. The catalyst was subjected to characterize by FTIR, XRD and SEM with EDX mapping. Response surface approach is engaged in this study for cost-effective production. More than 95% biodiesel yield was achieved for Ceiba penandra oil (CPO), Mahua longifolia oil (MLO), Azadirachta indica oil (AIO) and their mixture (MIO) by optimization of significant reaction parameters and the best combination was obtained as methanol oil ratio (0.32, 0.46, 0.34 and 0.42 v/v), catalyst usage (5, 6.5, 6 and 4 wt.%), mixing intensity (750, 840, 700 and 540 rpm) and duration (80, 105, 85 and 85 min) respectively with constant temperature of 70°C. Fatty acid profile was characterized by chromatograph also established the properties by ASTM and EN guidelines to confirm its compatibility in the IC engine.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.