SNAP:用于16nm CMOS非结构化稀疏深度神经网络推理的1.67 - 21.55TOPS/W稀疏神经加速处理器

Jie-Fang Zhang, Ching-En Lee, Chester Liu, Y. Shao, S. Keckler, Zhengya Zhang
{"title":"SNAP:用于16nm CMOS非结构化稀疏深度神经网络推理的1.67 - 21.55TOPS/W稀疏神经加速处理器","authors":"Jie-Fang Zhang, Ching-En Lee, Chester Liu, Y. Shao, S. Keckler, Zhengya Zhang","doi":"10.23919/VLSIC.2019.8778193","DOIUrl":null,"url":null,"abstract":"A Sparse Neural Acceleration Processor (SNAP) is designed to exploit unstructured sparsity in deep neural networks (DNNs). SNAP uses parallel associative search to discover input pairs to maintain an average 75% hardware utilization. SNAP’s two-level partial sum reduce eliminates access contention and cuts the writeback traffic by $22\\times$. Through diagonal and row configurations of PE arrays, SNAP supports any CONV and FC layers. A 2.4mm2 16 nm SNAP test chip is measured to achieve a peak effectual efficiency of 21.55TOPS/W (16b) at 0.55V and 260MHz for CONV layers with 10% weight and activation density. Operating on pruned ResNet-50, SNAP achieves 90.98fps at 0.80V and 480MHz, dissipating 348mW.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"14 1","pages":"C306-C307"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"SNAP: A 1.67 — 21.55TOPS/W Sparse Neural Acceleration Processor for Unstructured Sparse Deep Neural Network Inference in 16nm CMOS\",\"authors\":\"Jie-Fang Zhang, Ching-En Lee, Chester Liu, Y. Shao, S. Keckler, Zhengya Zhang\",\"doi\":\"10.23919/VLSIC.2019.8778193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Sparse Neural Acceleration Processor (SNAP) is designed to exploit unstructured sparsity in deep neural networks (DNNs). SNAP uses parallel associative search to discover input pairs to maintain an average 75% hardware utilization. SNAP’s two-level partial sum reduce eliminates access contention and cuts the writeback traffic by $22\\\\times$. Through diagonal and row configurations of PE arrays, SNAP supports any CONV and FC layers. A 2.4mm2 16 nm SNAP test chip is measured to achieve a peak effectual efficiency of 21.55TOPS/W (16b) at 0.55V and 260MHz for CONV layers with 10% weight and activation density. Operating on pruned ResNet-50, SNAP achieves 90.98fps at 0.80V and 480MHz, dissipating 348mW.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"14 1\",\"pages\":\"C306-C307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8778193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

稀疏神经加速处理器(SNAP)旨在利用深度神经网络(dnn)中的非结构化稀疏性。SNAP使用并行关联搜索来发现输入对,以保持平均75%的硬件利用率。SNAP的两级部分和减少消除了访问争用,并将回写流量减少了22倍。通过PE阵列的对角线和行配置,SNAP支持任何CONV和FC层。在重量和激活密度为10%的CONV层中,测量了一个2.4mm2的16nm SNAP测试芯片,在0.55V和260MHz下实现了21.55TOPS/W (16b)的峰值有效效率。在修剪后的ResNet-50上工作,SNAP在0.80V和480MHz时达到90.98fps,功耗为348mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SNAP: A 1.67 — 21.55TOPS/W Sparse Neural Acceleration Processor for Unstructured Sparse Deep Neural Network Inference in 16nm CMOS
A Sparse Neural Acceleration Processor (SNAP) is designed to exploit unstructured sparsity in deep neural networks (DNNs). SNAP uses parallel associative search to discover input pairs to maintain an average 75% hardware utilization. SNAP’s two-level partial sum reduce eliminates access contention and cuts the writeback traffic by $22\times$. Through diagonal and row configurations of PE arrays, SNAP supports any CONV and FC layers. A 2.4mm2 16 nm SNAP test chip is measured to achieve a peak effectual efficiency of 21.55TOPS/W (16b) at 0.55V and 260MHz for CONV layers with 10% weight and activation density. Operating on pruned ResNet-50, SNAP achieves 90.98fps at 0.80V and 480MHz, dissipating 348mW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信