基于组件的数据同化策略及其在血管流动中的应用

D. Bui, P. Mollo, F. Nobile, T. Taddei
{"title":"基于组件的数据同化策略及其在血管流动中的应用","authors":"D. Bui, P. Mollo, F. Nobile, T. Taddei","doi":"10.1051/proc/202373089","DOIUrl":null,"url":null,"abstract":"We present a parameterized-background data-weak (PBDW) approach [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933–965] to the steady-state variational data assimilation (DA) problem for systems modeled by partial differential equations (PDEs) and characterized by multiple interconnected components, with emphasis on vascular flows. We focus on the problem of reconstructing the state of the system in one specific component, based on local measurements. The PBDW approach does not require the solution of any PDE model at prediction stage (projection-by-data) and, as such, enables local state estimates on single components, as long as good background and update spaces for the estimation can be constructed. We discuss the application of PBDW to a two-dimensional steady Navier-Stokes problem for a family of parameterized geometries, and investigate instead the effects of enforcing no-slip boundary conditions and incompressibility constraints on the background and update spaces to enhance the state estimation. Furthermore, we show an actionable strategy to train local reduced-order bases (ROBs) for the background space that can later be used for DA tasks.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A component-based data assimilation strategy with applications to vascular flows\",\"authors\":\"D. Bui, P. Mollo, F. Nobile, T. Taddei\",\"doi\":\"10.1051/proc/202373089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a parameterized-background data-weak (PBDW) approach [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933–965] to the steady-state variational data assimilation (DA) problem for systems modeled by partial differential equations (PDEs) and characterized by multiple interconnected components, with emphasis on vascular flows. We focus on the problem of reconstructing the state of the system in one specific component, based on local measurements. The PBDW approach does not require the solution of any PDE model at prediction stage (projection-by-data) and, as such, enables local state estimates on single components, as long as good background and update spaces for the estimation can be constructed. We discuss the application of PBDW to a two-dimensional steady Navier-Stokes problem for a family of parameterized geometries, and investigate instead the effects of enforcing no-slip boundary conditions and incompressibility constraints on the background and update spaces to enhance the state estimation. Furthermore, we show an actionable strategy to train local reduced-order bases (ROBs) for the background space that can later be used for DA tasks.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202373089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202373089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种参数化背景数据弱化(PBDW)方法[Y Maday, AT Patera, JD Penn, M Yano, Int J .数值模拟学报,32(5),933-965],用于解决偏微分方程(PDEs)系统稳态变分数据同化(DA)问题。我们关注的是基于局部测量,在一个特定组件中重构系统状态的问题。PBDW方法不需要在预测阶段求解任何PDE模型(按数据投影),因此,只要可以为估计构建良好的背景和更新空间,就可以对单个组件进行局部状态估计。我们讨论了PBDW在一类参数化几何的二维稳态Navier-Stokes问题中的应用,并研究了在背景空间和更新空间上施加无滑移边界条件和不可压缩约束以增强状态估计的效果。此外,我们还展示了一种可操作的策略来为背景空间训练局部降阶基(ROBs),这些背景空间可以稍后用于数据处理任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A component-based data assimilation strategy with applications to vascular flows
We present a parameterized-background data-weak (PBDW) approach [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933–965] to the steady-state variational data assimilation (DA) problem for systems modeled by partial differential equations (PDEs) and characterized by multiple interconnected components, with emphasis on vascular flows. We focus on the problem of reconstructing the state of the system in one specific component, based on local measurements. The PBDW approach does not require the solution of any PDE model at prediction stage (projection-by-data) and, as such, enables local state estimates on single components, as long as good background and update spaces for the estimation can be constructed. We discuss the application of PBDW to a two-dimensional steady Navier-Stokes problem for a family of parameterized geometries, and investigate instead the effects of enforcing no-slip boundary conditions and incompressibility constraints on the background and update spaces to enhance the state estimation. Furthermore, we show an actionable strategy to train local reduced-order bases (ROBs) for the background space that can later be used for DA tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信