空间聚类数据建模的广义估计方程方法

IF 0.6 Q4 STATISTICS & PROBABILITY
Nasrin Lipi, Mohammad Samsul Alam, S. S. Hossain
{"title":"空间聚类数据建模的广义估计方程方法","authors":"Nasrin Lipi, Mohammad Samsul Alam, S. S. Hossain","doi":"10.17713/AJS.V50I4.1097","DOIUrl":null,"url":null,"abstract":"Clustering in spatial data is very common phenomena in various fields such as disease mapping, ecology, environmental science and so on. Analysis of spatially clustered data should be different from conventional analysis of spatial data because of the nature of clusters in the data. Because it is expected that the observations of same cluster are more similar than the observations from different clusters. In this study, a method has been proposed for the analysis of spatially clustered areal data based on generalized estimating equations which were originally developed for analyzing longitudinal data. The performance of the model for known clusters is tested in terms of how well it estimates the regression parameters and how well it captures the true spatial process. These results are presented and compared with the conditional auto-regressive model which is the most frequently used spatial model. In the simulation study, the proposed generalized estimating equations approach yields better results than the popular conditional auto-regressive model from the both perspectives of parameter estimation and spatial process capturing. A real life data on the vitamin A supplement coverage among postpartum women in Bangladesh is then analyzed for demonstration of the method. The existing divisional clustering behavior of vitamin A supplement coverage in Bangladesh is identified more accurately by the proposed approach than that by the conditional auto-regressive model.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"61 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generalized Estimating Equations Approach for Modeling Spatially Clustered Data\",\"authors\":\"Nasrin Lipi, Mohammad Samsul Alam, S. S. Hossain\",\"doi\":\"10.17713/AJS.V50I4.1097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering in spatial data is very common phenomena in various fields such as disease mapping, ecology, environmental science and so on. Analysis of spatially clustered data should be different from conventional analysis of spatial data because of the nature of clusters in the data. Because it is expected that the observations of same cluster are more similar than the observations from different clusters. In this study, a method has been proposed for the analysis of spatially clustered areal data based on generalized estimating equations which were originally developed for analyzing longitudinal data. The performance of the model for known clusters is tested in terms of how well it estimates the regression parameters and how well it captures the true spatial process. These results are presented and compared with the conditional auto-regressive model which is the most frequently used spatial model. In the simulation study, the proposed generalized estimating equations approach yields better results than the popular conditional auto-regressive model from the both perspectives of parameter estimation and spatial process capturing. A real life data on the vitamin A supplement coverage among postpartum women in Bangladesh is then analyzed for demonstration of the method. The existing divisional clustering behavior of vitamin A supplement coverage in Bangladesh is identified more accurately by the proposed approach than that by the conditional auto-regressive model.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/AJS.V50I4.1097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/AJS.V50I4.1097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

空间数据聚类是疾病制图、生态学、环境科学等各个领域中非常普遍的现象。由于数据中的聚类性质,对空间聚类数据的分析应该不同于传统的空间数据分析。因为期望同一聚类的观测值比不同聚类的观测值更相似。本文提出了一种基于广义估计方程的空间聚类区域数据分析方法,该方法最初是为分析纵向数据而开发的。对于已知集群,模型的性能是根据它估计回归参数的程度以及它捕获真实空间过程的程度来测试的。将这些结果与最常用的空间模型条件自回归模型进行了比较。在模拟研究中,本文提出的广义估计方程方法在参数估计和空间过程捕获方面都优于常用的条件自回归模型。然后分析了孟加拉国产后妇女维生素A补充剂覆盖率的真实生活数据,以证明该方法。与条件自回归模型相比,所提出的方法更准确地确定了孟加拉国维生素A补充剂覆盖范围的现有分区聚类行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Estimating Equations Approach for Modeling Spatially Clustered Data
Clustering in spatial data is very common phenomena in various fields such as disease mapping, ecology, environmental science and so on. Analysis of spatially clustered data should be different from conventional analysis of spatial data because of the nature of clusters in the data. Because it is expected that the observations of same cluster are more similar than the observations from different clusters. In this study, a method has been proposed for the analysis of spatially clustered areal data based on generalized estimating equations which were originally developed for analyzing longitudinal data. The performance of the model for known clusters is tested in terms of how well it estimates the regression parameters and how well it captures the true spatial process. These results are presented and compared with the conditional auto-regressive model which is the most frequently used spatial model. In the simulation study, the proposed generalized estimating equations approach yields better results than the popular conditional auto-regressive model from the both perspectives of parameter estimation and spatial process capturing. A real life data on the vitamin A supplement coverage among postpartum women in Bangladesh is then analyzed for demonstration of the method. The existing divisional clustering behavior of vitamin A supplement coverage in Bangladesh is identified more accurately by the proposed approach than that by the conditional auto-regressive model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信