使用RFECV和ADASYN检测数据的特性选择和附加处理程序

Irfan Pratama, A. Chandra, Putri Taqwa Presetyaningrum
{"title":"使用RFECV和ADASYN检测数据的特性选择和附加处理程序","authors":"Irfan Pratama, A. Chandra, Putri Taqwa Presetyaningrum","doi":"10.30864/eksplora.v11i1.578","DOIUrl":null,"url":null,"abstract":"Proses data mining bekerja terhadap data yang tersedia. Jika dataset tidak tersedia sepenuhnya, hasil pengolahan data mining menjadi tidak optimal. Terdapat beberapa kondisi data yang perlu penanganan terlebih dahulu sebelum memasuki tahap data mining. Salah satunya ialah imbalanced class yang merupakan kondisi di mana distribusi data pada setiap kelas tidak proporsional. Sebagai salah satu cara untuk efisiensi proses klasifikasi, seleksi fitur dapat memenuhi kebutuhan tersebut karena hasil dari seleksi fitur adalah sebuah dataset dengan jumlah atribut yang lebih sedikit dari sebelumnya. Untuk menyelesaikan permasalahan imbalanced class, ADASYN digunakan dalam penelitian ini sebagai metode untuk menyeimbangkan proporsi kelas pada dataset. Sedangkan RFECV digunakan sebagai metode fitur seleksi yang dapat meningkatkan efisiensi pada proses klasifikasi. Setelah dilakukan evaluasi dari hasil klasifikasi pada dataset yang menggunakan seleksi fitur, didapatkan hasil klasifikasi yang lebih baik dibandingkan dengan hasil klasifikasi pada dataset tanpa seleksi fitur. Hal tersebut dibuktikan dengan perbandingan antara hasil terbaik dari akurasi klasifikasi dataset tanpa seleksi fitur. Hasil dari metode CART sebesar 85.1% yang merupakan hasil dari pengolahan data tanpa menggunakan metode fitur seleksi. sedangkan metode Bagging k-NN yang menghasilkan akurasi sebesar 88% yang di aplikasikan pada dataset dengan seleksi fitur. Sehingga dapat disimpulkan bahwa seleksi fitur dapat meningkatkan akurasi pada klasifikasi.","PeriodicalId":34236,"journal":{"name":"Jurnal Eksplora Informatika","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Seleksi Fitur dan Penanganan Imbalanced Data menggunakan RFECV dan ADASYN\",\"authors\":\"Irfan Pratama, A. Chandra, Putri Taqwa Presetyaningrum\",\"doi\":\"10.30864/eksplora.v11i1.578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proses data mining bekerja terhadap data yang tersedia. Jika dataset tidak tersedia sepenuhnya, hasil pengolahan data mining menjadi tidak optimal. Terdapat beberapa kondisi data yang perlu penanganan terlebih dahulu sebelum memasuki tahap data mining. Salah satunya ialah imbalanced class yang merupakan kondisi di mana distribusi data pada setiap kelas tidak proporsional. Sebagai salah satu cara untuk efisiensi proses klasifikasi, seleksi fitur dapat memenuhi kebutuhan tersebut karena hasil dari seleksi fitur adalah sebuah dataset dengan jumlah atribut yang lebih sedikit dari sebelumnya. Untuk menyelesaikan permasalahan imbalanced class, ADASYN digunakan dalam penelitian ini sebagai metode untuk menyeimbangkan proporsi kelas pada dataset. Sedangkan RFECV digunakan sebagai metode fitur seleksi yang dapat meningkatkan efisiensi pada proses klasifikasi. Setelah dilakukan evaluasi dari hasil klasifikasi pada dataset yang menggunakan seleksi fitur, didapatkan hasil klasifikasi yang lebih baik dibandingkan dengan hasil klasifikasi pada dataset tanpa seleksi fitur. Hal tersebut dibuktikan dengan perbandingan antara hasil terbaik dari akurasi klasifikasi dataset tanpa seleksi fitur. Hasil dari metode CART sebesar 85.1% yang merupakan hasil dari pengolahan data tanpa menggunakan metode fitur seleksi. sedangkan metode Bagging k-NN yang menghasilkan akurasi sebesar 88% yang di aplikasikan pada dataset dengan seleksi fitur. Sehingga dapat disimpulkan bahwa seleksi fitur dapat meningkatkan akurasi pada klasifikasi.\",\"PeriodicalId\":34236,\"journal\":{\"name\":\"Jurnal Eksplora Informatika\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Eksplora Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30864/eksplora.v11i1.578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Eksplora Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30864/eksplora.v11i1.578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据挖掘过程对现有数据有效。如果不能完全提供数据集,数据挖掘处理结果将变得不理想。在进入数据挖掘阶段之前,有一些数据条件需要处理。其中之一是对偶级的增益,这是每个类数据分布不成比例的情况。作为分类过程效率的一种方法,功能选择可以满足这些需求,因为功能选择的结果是一个比以往任何时候都少的属性数量的数据集。为了解决附加类问题,ada应用于本研究中,作为一种在数据集中平衡课堂比例的方法。而RFECV被用作一种选择特性的方法,可以提高分类过程的效率。在使用特征选择的数据集的分类结果进行评估后,可以获得比没有特征选择的数据集的分类结果更好的结果。在没有特定功能选择的数据分类分类的最佳结果之间进行比较,就可以证明这一点。推车方法的结果为85.1%,这是数据处理的结果,没有使用选择特征方法。而k-NN的方法在功能选择的数据集上的应用准确率为88%。由此推断,特征选择可以增加分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seleksi Fitur dan Penanganan Imbalanced Data menggunakan RFECV dan ADASYN
Proses data mining bekerja terhadap data yang tersedia. Jika dataset tidak tersedia sepenuhnya, hasil pengolahan data mining menjadi tidak optimal. Terdapat beberapa kondisi data yang perlu penanganan terlebih dahulu sebelum memasuki tahap data mining. Salah satunya ialah imbalanced class yang merupakan kondisi di mana distribusi data pada setiap kelas tidak proporsional. Sebagai salah satu cara untuk efisiensi proses klasifikasi, seleksi fitur dapat memenuhi kebutuhan tersebut karena hasil dari seleksi fitur adalah sebuah dataset dengan jumlah atribut yang lebih sedikit dari sebelumnya. Untuk menyelesaikan permasalahan imbalanced class, ADASYN digunakan dalam penelitian ini sebagai metode untuk menyeimbangkan proporsi kelas pada dataset. Sedangkan RFECV digunakan sebagai metode fitur seleksi yang dapat meningkatkan efisiensi pada proses klasifikasi. Setelah dilakukan evaluasi dari hasil klasifikasi pada dataset yang menggunakan seleksi fitur, didapatkan hasil klasifikasi yang lebih baik dibandingkan dengan hasil klasifikasi pada dataset tanpa seleksi fitur. Hal tersebut dibuktikan dengan perbandingan antara hasil terbaik dari akurasi klasifikasi dataset tanpa seleksi fitur. Hasil dari metode CART sebesar 85.1% yang merupakan hasil dari pengolahan data tanpa menggunakan metode fitur seleksi. sedangkan metode Bagging k-NN yang menghasilkan akurasi sebesar 88% yang di aplikasikan pada dataset dengan seleksi fitur. Sehingga dapat disimpulkan bahwa seleksi fitur dapat meningkatkan akurasi pada klasifikasi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信