S. Pakazad, A. Hansson, Martin S. Andersen, A. Rantzer
{"title":"基于弦分解的互联不确定系统的分布鲁棒性分析","authors":"S. Pakazad, A. Hansson, Martin S. Andersen, A. Rantzer","doi":"10.3182/20140824-6-ZA-1003.01649","DOIUrl":null,"url":null,"abstract":"Abstract Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"70 1","pages":"2594-2599"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition\",\"authors\":\"S. Pakazad, A. Hansson, Martin S. Andersen, A. Rantzer\",\"doi\":\"10.3182/20140824-6-ZA-1003.01649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"70 1\",\"pages\":\"2594-2599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.01649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.01649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition
Abstract Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment.