{"title":"挖掘机工作设备用于孤岛管道的维修","authors":"Anton Letopol'skiy, P. Korchagin, I. Teterina","doi":"10.30987/1999-8775-2021-11-66-72","DOIUrl":null,"url":null,"abstract":"Work objective. Modernization of the excavator's working equipment design intended for islands of pipeline repair together with confirmation of its operability by checking the machine for stability, carrying out the necessary calculations of the hydraulic system. \nMethods. The main idea is in accessorizing the main working equipment of the excavator with a structure consisting of three teeth, which is in a body with an excavator bucket form a pickup mechanism. To confirm the operability of the proposed design, theoretical studies have been carried out aimed at determining the stability of the machine for the most dangerous design operating positions, and permissible pipe sizes have been established so that working with these sizes provides the stability of the machine. \nResults. A variant of improving the design of the excavator working equipment of the third size group has been developed. The equipment is intended for carrying out random repair of the pipeline by the excavator without involving other road construction equipment (for example, a pipelaying crane). The proposed design of the working body allows speeding pipeline repair by reducing the time spent on changing or relocating the equipment, which as a result reduces the cost of repair work. \nConclusions. Calculations of the excavator hydraulic system have been carried out. In addition, as a result of theoretical studies, calculated dependences have been obtained, which made it possible to establish the stability coefficient of the excavator of the third size group when working with upgraded equipment and the pipeline diameter in the range of 720 ...1420 mm. As a result of the research, it was found that the proposed equipment is effective for carrying out random repairs of pipelines with diameters of 720, 1020 and 1220 mm. The stability of the machine in the most dangerous positions is being carried out. The calculation shows that when the excavator does demolition works of a pipeline with a diameter of 1420 mm, there is a danger of overturning the machine due to a decrease in the Ku coefficient below the permissible value.","PeriodicalId":9358,"journal":{"name":"Bulletin of Bryansk state technical university","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXCAVATOR WORKING EQUIPMENT FOR ISLANDS OF PIPELINE REPAIR\",\"authors\":\"Anton Letopol'skiy, P. Korchagin, I. Teterina\",\"doi\":\"10.30987/1999-8775-2021-11-66-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Work objective. Modernization of the excavator's working equipment design intended for islands of pipeline repair together with confirmation of its operability by checking the machine for stability, carrying out the necessary calculations of the hydraulic system. \\nMethods. The main idea is in accessorizing the main working equipment of the excavator with a structure consisting of three teeth, which is in a body with an excavator bucket form a pickup mechanism. To confirm the operability of the proposed design, theoretical studies have been carried out aimed at determining the stability of the machine for the most dangerous design operating positions, and permissible pipe sizes have been established so that working with these sizes provides the stability of the machine. \\nResults. A variant of improving the design of the excavator working equipment of the third size group has been developed. The equipment is intended for carrying out random repair of the pipeline by the excavator without involving other road construction equipment (for example, a pipelaying crane). The proposed design of the working body allows speeding pipeline repair by reducing the time spent on changing or relocating the equipment, which as a result reduces the cost of repair work. \\nConclusions. Calculations of the excavator hydraulic system have been carried out. In addition, as a result of theoretical studies, calculated dependences have been obtained, which made it possible to establish the stability coefficient of the excavator of the third size group when working with upgraded equipment and the pipeline diameter in the range of 720 ...1420 mm. As a result of the research, it was found that the proposed equipment is effective for carrying out random repairs of pipelines with diameters of 720, 1020 and 1220 mm. The stability of the machine in the most dangerous positions is being carried out. The calculation shows that when the excavator does demolition works of a pipeline with a diameter of 1420 mm, there is a danger of overturning the machine due to a decrease in the Ku coefficient below the permissible value.\",\"PeriodicalId\":9358,\"journal\":{\"name\":\"Bulletin of Bryansk state technical university\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Bryansk state technical university\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/1999-8775-2021-11-66-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Bryansk state technical university","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/1999-8775-2021-11-66-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXCAVATOR WORKING EQUIPMENT FOR ISLANDS OF PIPELINE REPAIR
Work objective. Modernization of the excavator's working equipment design intended for islands of pipeline repair together with confirmation of its operability by checking the machine for stability, carrying out the necessary calculations of the hydraulic system.
Methods. The main idea is in accessorizing the main working equipment of the excavator with a structure consisting of three teeth, which is in a body with an excavator bucket form a pickup mechanism. To confirm the operability of the proposed design, theoretical studies have been carried out aimed at determining the stability of the machine for the most dangerous design operating positions, and permissible pipe sizes have been established so that working with these sizes provides the stability of the machine.
Results. A variant of improving the design of the excavator working equipment of the third size group has been developed. The equipment is intended for carrying out random repair of the pipeline by the excavator without involving other road construction equipment (for example, a pipelaying crane). The proposed design of the working body allows speeding pipeline repair by reducing the time spent on changing or relocating the equipment, which as a result reduces the cost of repair work.
Conclusions. Calculations of the excavator hydraulic system have been carried out. In addition, as a result of theoretical studies, calculated dependences have been obtained, which made it possible to establish the stability coefficient of the excavator of the third size group when working with upgraded equipment and the pipeline diameter in the range of 720 ...1420 mm. As a result of the research, it was found that the proposed equipment is effective for carrying out random repairs of pipelines with diameters of 720, 1020 and 1220 mm. The stability of the machine in the most dangerous positions is being carried out. The calculation shows that when the excavator does demolition works of a pipeline with a diameter of 1420 mm, there is a danger of overturning the machine due to a decrease in the Ku coefficient below the permissible value.