用于智能电网的可扩展状态流处理

R. Fernandez, M. Weidlich, P. Pietzuch, A. Gal
{"title":"用于智能电网的可扩展状态流处理","authors":"R. Fernandez, M. Weidlich, P. Pietzuch, A. Gal","doi":"10.1145/2611286.2611326","DOIUrl":null,"url":null,"abstract":"We describe a solution to the ACM DEBS Grand Challenge 2014, which evaluates event-based systems for smart grid analytics. Our solution follows the paradigm of stateful data stream processing and is implemented on top of the SEEP stream processing platform. It achieves high scalability by massive data-parallel processing and the option of performing semantic load-shedding. In addition, our solution is fault-tolerant, ensuring that the large processing state of stream operators is not lost after failure.\n Our experimental results show that our solution processes 1 month worth of data for 40 houses in 4 hours. When we scale out the system, the time reduces linearly to 30 minutes before the system bottlenecks at the data source. We then apply semantic load-shedding, maintaining a low median prediction error and reducing the time further to 17 minutes. The system achieves these results with median latencies below 30 ms and a 90th percentile below 50 ms.","PeriodicalId":92123,"journal":{"name":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","volume":"50 1","pages":"276-281"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Scalable stateful stream processing for smart grids\",\"authors\":\"R. Fernandez, M. Weidlich, P. Pietzuch, A. Gal\",\"doi\":\"10.1145/2611286.2611326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a solution to the ACM DEBS Grand Challenge 2014, which evaluates event-based systems for smart grid analytics. Our solution follows the paradigm of stateful data stream processing and is implemented on top of the SEEP stream processing platform. It achieves high scalability by massive data-parallel processing and the option of performing semantic load-shedding. In addition, our solution is fault-tolerant, ensuring that the large processing state of stream operators is not lost after failure.\\n Our experimental results show that our solution processes 1 month worth of data for 40 houses in 4 hours. When we scale out the system, the time reduces linearly to 30 minutes before the system bottlenecks at the data source. We then apply semantic load-shedding, maintaining a low median prediction error and reducing the time further to 17 minutes. The system achieves these results with median latencies below 30 ms and a 90th percentile below 50 ms.\",\"PeriodicalId\":92123,\"journal\":{\"name\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"volume\":\"50 1\",\"pages\":\"276-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611286.2611326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611286.2611326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们描述了2014年ACM DEBS大挑战的解决方案,该方案评估了用于智能电网分析的基于事件的系统。我们的解决方案遵循有状态数据流处理范例,并在SEEP流处理平台之上实现。它通过大规模数据并行处理和执行语义负载减少选项来实现高可伸缩性。此外,我们的解决方案是容错的,确保流操作符的大处理状态在故障后不会丢失。我们的实验结果表明,我们的解决方案在4小时内处理了40个房屋1个月的数据。当我们向外扩展系统时,在系统在数据源处遇到瓶颈之前,时间线性减少到30分钟。然后,我们应用语义负载减少,保持较低的中位数预测误差,并将时间进一步减少到17分钟。系统在中位延迟低于30毫秒,第90百分位延迟低于50毫秒的情况下实现了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable stateful stream processing for smart grids
We describe a solution to the ACM DEBS Grand Challenge 2014, which evaluates event-based systems for smart grid analytics. Our solution follows the paradigm of stateful data stream processing and is implemented on top of the SEEP stream processing platform. It achieves high scalability by massive data-parallel processing and the option of performing semantic load-shedding. In addition, our solution is fault-tolerant, ensuring that the large processing state of stream operators is not lost after failure. Our experimental results show that our solution processes 1 month worth of data for 40 houses in 4 hours. When we scale out the system, the time reduces linearly to 30 minutes before the system bottlenecks at the data source. We then apply semantic load-shedding, maintaining a low median prediction error and reducing the time further to 17 minutes. The system achieves these results with median latencies below 30 ms and a 90th percentile below 50 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信