在线社交网络中的影响与信息流

A. Agah, Mehran Asadi
{"title":"在线社交网络中的影响与信息流","authors":"A. Agah, Mehran Asadi","doi":"10.4018/IJVCSN.2017100101","DOIUrl":null,"url":null,"abstract":"This article introduces a new method to discover the role of influential people in online social networks and presents an algorithm that recognizes influential users to reach a target in the network, in order to provide a strategic advantage for organizations to direct the scope of their digital marketing strategies. Social links among friends play an important role in dictating their behavior in online social networks, these social links determine the flow of information in form of wall posts via shares, likes, re-tweets, mentions, etc., which determines the influence of a node. This article initially identities the correlated nodes in large data sets using customized divide-and-conquer algorithm and then measures the influence of each of these nodes using a linear function. Furthermore, the empirical results show that users who have the highest influence are those whose total number of friends are closer to the total number of friends of each node divided by the total number of nodes in the network.","PeriodicalId":90871,"journal":{"name":"International journal of virtual communities and social networking","volume":"1 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence and Information Flow in Online Social Networks\",\"authors\":\"A. Agah, Mehran Asadi\",\"doi\":\"10.4018/IJVCSN.2017100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a new method to discover the role of influential people in online social networks and presents an algorithm that recognizes influential users to reach a target in the network, in order to provide a strategic advantage for organizations to direct the scope of their digital marketing strategies. Social links among friends play an important role in dictating their behavior in online social networks, these social links determine the flow of information in form of wall posts via shares, likes, re-tweets, mentions, etc., which determines the influence of a node. This article initially identities the correlated nodes in large data sets using customized divide-and-conquer algorithm and then measures the influence of each of these nodes using a linear function. Furthermore, the empirical results show that users who have the highest influence are those whose total number of friends are closer to the total number of friends of each node divided by the total number of nodes in the network.\",\"PeriodicalId\":90871,\"journal\":{\"name\":\"International journal of virtual communities and social networking\",\"volume\":\"1 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of virtual communities and social networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJVCSN.2017100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of virtual communities and social networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJVCSN.2017100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种发现在线社交网络中有影响力的人的作用的新方法,并提出了一种识别有影响力的用户以达到网络目标的算法,以便为组织指导其数字营销策略的范围提供战略优势。在网络社交网络中,朋友之间的社交链接对他们的行为起着重要的支配作用,这些社交链接通过分享、点赞、转发、提及等方式,决定了信息以墙帖的形式流动,从而决定了一个节点的影响力。本文首先使用定制的分治算法确定大型数据集中的相关节点,然后使用线性函数测量每个节点的影响。此外,实证结果表明,影响力最高的用户是那些朋友总数更接近于每个节点的朋友总数除以网络中节点总数的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence and Information Flow in Online Social Networks
This article introduces a new method to discover the role of influential people in online social networks and presents an algorithm that recognizes influential users to reach a target in the network, in order to provide a strategic advantage for organizations to direct the scope of their digital marketing strategies. Social links among friends play an important role in dictating their behavior in online social networks, these social links determine the flow of information in form of wall posts via shares, likes, re-tweets, mentions, etc., which determines the influence of a node. This article initially identities the correlated nodes in large data sets using customized divide-and-conquer algorithm and then measures the influence of each of these nodes using a linear function. Furthermore, the empirical results show that users who have the highest influence are those whose total number of friends are closer to the total number of friends of each node divided by the total number of nodes in the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信