从网络数据自动生成销售线索

Ganesh Ramakrishnan, Sachindra Joshi, Sumit Negi, R. Krishnapuram, S. Balakrishnan
{"title":"从网络数据自动生成销售线索","authors":"Ganesh Ramakrishnan, Sachindra Joshi, Sumit Negi, R. Krishnapuram, S. Balakrishnan","doi":"10.1109/ICDE.2006.28","DOIUrl":null,"url":null,"abstract":"Speed to market is critical to companies that are driven by sales in a competitive market. The earlier a potential customer can be approached in the decision making process of a purchase, the higher are the chances of converting that prospect into a customer. Traditional methods to identify sales leads such as company surveys and direct marketing are manual, expensive and not scalable. Over the past decade the World Wide Web has grown into an information-mesh, with most important facts being reported through Web sites. Several news papers, press releases, trade journals, business magazines and other related sources are on-line. These sources could be used to identify prospective buyers automatically. In this paper, we present a system called ETAP (Electronic Trigger Alert Program) that extracts trigger events from Web data that help in identifying prospective buyers. Trigger events are events of corporate relevance and indicative of the propensity of companies to purchase new products associated with these events. Examples of trigger events are change in management, revenue growth and mergers & acquisitions. The unstructured nature of information makes the extraction task of trigger events difficult. We pose the problem of trigger events extraction as a classification problem and develop methods for learning trigger event classifiers using existing classification methods. We present methods to automatically generate the training data required to learn the classifiers. We also propose a method of feature abstraction that uses named entity recognition to solve the problem of data sparsity. We score and rank the trigger events extracted from ETAP for easy browsing. Our experiments show the effectiveness of the method and thus establish the feasibility of automatic sales lead generation using the Web data.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"67 1","pages":"101-101"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Sales Lead Generation from Web Data\",\"authors\":\"Ganesh Ramakrishnan, Sachindra Joshi, Sumit Negi, R. Krishnapuram, S. Balakrishnan\",\"doi\":\"10.1109/ICDE.2006.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speed to market is critical to companies that are driven by sales in a competitive market. The earlier a potential customer can be approached in the decision making process of a purchase, the higher are the chances of converting that prospect into a customer. Traditional methods to identify sales leads such as company surveys and direct marketing are manual, expensive and not scalable. Over the past decade the World Wide Web has grown into an information-mesh, with most important facts being reported through Web sites. Several news papers, press releases, trade journals, business magazines and other related sources are on-line. These sources could be used to identify prospective buyers automatically. In this paper, we present a system called ETAP (Electronic Trigger Alert Program) that extracts trigger events from Web data that help in identifying prospective buyers. Trigger events are events of corporate relevance and indicative of the propensity of companies to purchase new products associated with these events. Examples of trigger events are change in management, revenue growth and mergers & acquisitions. The unstructured nature of information makes the extraction task of trigger events difficult. We pose the problem of trigger events extraction as a classification problem and develop methods for learning trigger event classifiers using existing classification methods. We present methods to automatically generate the training data required to learn the classifiers. We also propose a method of feature abstraction that uses named entity recognition to solve the problem of data sparsity. We score and rank the trigger events extracted from ETAP for easy browsing. Our experiments show the effectiveness of the method and thus establish the feasibility of automatic sales lead generation using the Web data.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"67 1\",\"pages\":\"101-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于在竞争激烈的市场中靠销售驱动的公司来说,上市速度至关重要。在购买决策过程中,越早接触潜在客户,将潜在客户转化为客户的机会就越高。识别销售线索的传统方法,如公司调查和直接营销,是手动的,昂贵的,不可扩展的。在过去的十年里,万维网已经发展成为一个信息网,大多数重要的事实都是通过网站报道的。一些新闻报纸、新闻稿、贸易期刊、商业杂志和其他相关资源都在网上。这些资源可用于自动识别潜在买家。在本文中,我们提出了一个称为ETAP(电子触发警报程序)的系统,该系统从Web数据中提取触发事件,有助于识别潜在买家。触发事件是与公司相关的事件,表明公司倾向于购买与这些事件相关的新产品。触发事件的例子有管理层变动、收入增长和并购。信息的非结构化特性使得提取触发事件的任务变得困难。我们将触发事件提取问题作为一个分类问题,并开发了使用现有分类方法学习触发事件分类器的方法。我们提出了自动生成学习分类器所需的训练数据的方法。我们还提出了一种使用命名实体识别的特征抽象方法来解决数据稀疏性问题。我们对从ETAP中提取的触发事件进行评分和排序,以便于浏览。实验证明了该方法的有效性,从而建立了利用Web数据自动生成销售线索的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Sales Lead Generation from Web Data
Speed to market is critical to companies that are driven by sales in a competitive market. The earlier a potential customer can be approached in the decision making process of a purchase, the higher are the chances of converting that prospect into a customer. Traditional methods to identify sales leads such as company surveys and direct marketing are manual, expensive and not scalable. Over the past decade the World Wide Web has grown into an information-mesh, with most important facts being reported through Web sites. Several news papers, press releases, trade journals, business magazines and other related sources are on-line. These sources could be used to identify prospective buyers automatically. In this paper, we present a system called ETAP (Electronic Trigger Alert Program) that extracts trigger events from Web data that help in identifying prospective buyers. Trigger events are events of corporate relevance and indicative of the propensity of companies to purchase new products associated with these events. Examples of trigger events are change in management, revenue growth and mergers & acquisitions. The unstructured nature of information makes the extraction task of trigger events difficult. We pose the problem of trigger events extraction as a classification problem and develop methods for learning trigger event classifiers using existing classification methods. We present methods to automatically generate the training data required to learn the classifiers. We also propose a method of feature abstraction that uses named entity recognition to solve the problem of data sparsity. We score and rank the trigger events extracted from ETAP for easy browsing. Our experiments show the effectiveness of the method and thus establish the feasibility of automatic sales lead generation using the Web data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信