跟踪人员并识别他们的活动

Deva Ramanan, D. Forsyth, Andrew Zisserman
{"title":"跟踪人员并识别他们的活动","authors":"Deva Ramanan, D. Forsyth, Andrew Zisserman","doi":"10.1109/CVPR.2005.353","DOIUrl":null,"url":null,"abstract":"We present a system for automatic people tracking and activity recognition. Our basic approach to people-tracking is to build an appearance model for the person in the video. The video illustrates our method of using a stylized-pose detector. Our system builds a model of limb appearance from those sparse stylized detections. Our algorithm then reprocesses the video, using the learned appearance models to find people in unrestricted configuration. We can use our tracker to recover 3D configurations and activity labels. We assume we have a motion capture library where the 3D poses have been labeled offline with activity descriptions.","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"24 1","pages":"1194"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Tracking People and Recognizing Their Activities\",\"authors\":\"Deva Ramanan, D. Forsyth, Andrew Zisserman\",\"doi\":\"10.1109/CVPR.2005.353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a system for automatic people tracking and activity recognition. Our basic approach to people-tracking is to build an appearance model for the person in the video. The video illustrates our method of using a stylized-pose detector. Our system builds a model of limb appearance from those sparse stylized detections. Our algorithm then reprocesses the video, using the learned appearance models to find people in unrestricted configuration. We can use our tracker to recover 3D configurations and activity labels. We assume we have a motion capture library where the 3D poses have been labeled offline with activity descriptions.\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"24 1\",\"pages\":\"1194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2005.353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2005.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种自动跟踪和活动识别系统。我们进行人员跟踪的基本方法是为视频中的人建立一个外观模型。视频演示了我们使用程式化姿势检测器的方法。我们的系统从这些稀疏的程式化检测中建立肢体外观模型。然后,我们的算法重新处理视频,使用学习到的外观模型来寻找不受限制配置的人。我们可以使用跟踪器来恢复3D配置和活动标签。我们假设我们有一个动作捕捉库,其中3D姿势已被标记为离线活动描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking People and Recognizing Their Activities
We present a system for automatic people tracking and activity recognition. Our basic approach to people-tracking is to build an appearance model for the person in the video. The video illustrates our method of using a stylized-pose detector. Our system builds a model of limb appearance from those sparse stylized detections. Our algorithm then reprocesses the video, using the learned appearance models to find people in unrestricted configuration. We can use our tracker to recover 3D configurations and activity labels. We assume we have a motion capture library where the 3D poses have been labeled offline with activity descriptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信